Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar"

Transcripción

1 ClasesATodaHora.com.ar > Exámenes > UBA - UBA XXI > Introd. al Pensamiento Científico Introd. al Pens. Científico Nociones básicas de la lógica ClasesATodaHora.com.ar Razonamientos: Conjunto de propiedades en el que las premisas se toman como punto de partida para deducir otra proposición denominada conclusión. Ésta última se sigue lógicamente de las premisas. Expresiones derivativas: Organizan el razonamiento. Tiene 3 clasificaciones: - Coordinantes: Y - PERO- etc. - Introducen la conclusión: LUEGO - POR LO TANTO - POR ENDE - etc. - Los que indican premisas: PUESTO QUE - YA QUE - PORQUE - DADO QUE - etc. A la lógica no le importa si las premisas son verdaderas o falsas, sino la forma de llegar a la conclusión, es decir, la forma de razonamiento. 2) Lenguaje de la lógica Proposicional Variables proposicionales: p, q, r, s, t... Conectivas lógicas: NO ; Y ; O ; ENTONCES Paréntesis: ( ) 2.1) Lenguaje y Metalenguaje Lenguaje Objeto: el lenguaje que se estudia. Metalenguaje: El que sabemos, el propio. 2.2) Conectivas y el lenguaje Natural Condicionales: Por ser Formal, no interesa su contenido, sino la forma de razonamiento; por eso no es necesario que tenga correspondencia con el mundo. Antecedente: La condición. Generalmente siempre va primero. Consecuente: Es la proposición que se afirma bajo la condición, es decir, lo que sucedería si el antecedente se cumple. Por ejemplo: "Si apruebo Pensamiento Científico, me voy de vacaciones" Antecedente Consecuente Entre el ANTECEDENTE y el CONSECUENTE no es necesario que halla relación entre uno y otro. Condicional material: (A B) es verdadero si A es falso o B es verdadero. - Si ambos términos son V o F mi condicional va a ser verdadero. - El condicional es FALSO cuando el antecedente es verdadero y el consecuente es falso. Por ejemplo: - Promocioné IPC y me fui de vacaciones. (V- V) VERDADERA - No promocioné IPC y no me fui de vacaciones. (F - F ) VERDADERA - Promocioné IPC pero no me fui de vacaciones. (V- F) FALSA - No promocioné IPC pero me fui de vacaciones. (F- V) VERDADERA Condicional vacuamente verdadero: Cuando se tiene un condicional Verdadero con un antecedente Falso. Por ejemplo: " Si pongo las manos en el fuego, me quemo" Este condicional es verdadero cuando pongo las manos en el fuego, es decir, A y B son verdaderos, pero normalmente no solemos poner las manos en el fuego y no nos quemamos, es decir, A y B son falsos. Sin embargo sigue siendo verdad que si ponemos las manos en el fuego nos quemamos, por eso esta clase de condicionales reciben este nombre. El condicional es verdadero siempre y cuando no quede el antecedente verdadero y el consecuente falso. Recordar: El punto separa las premisas. 3. VALIDEZ La validez es la encargada de transmitir la verdad, asegura que si la forma de razonamiento es válida, la conclusión va a ser verdadera. Es importante mencionar que la validez de un razonamiento no depende de los valores veritativos de las proposiciones que lo componen. Forma de razonamiento inválida: V F Premisas Conclusión - Razonamiento válido + conclusión falsa = Por lo menos una de las premisas es falsa. 3.1) Contraejemplo Dar un contraejemplo consiste en construir un razonamiento de igual forma lógica que otro, pero con premisas verdaderas y conclusión falsa. Su función es probar la invalidez de un razonamiento. NO ES MÉTODO PARA PROBAR LA VALIDEZ DE UN RAZONAMIENTO. Por ejemplo: p p q

2 q Contraejemplo: Si Maradona es un actor famoso, entonces es conocido en el mundo entero Maradona no es un actor famoso Maradona no es conocido en el mundo entero Entonces sabemos que el razonamiento es inválido. 3.2) Formas válidas e inválidas - La validez de los razonamientos depende de su forma. Si la forma es válida y las premisas son verdaderas, la conclusión necesariamente también será verdadera. Formas válidas: - Estas formas no admiten casos de sustitución que hagan a las premisas verdaderas y a la conclusión falsa. Formas inválidas: - Estas formas admiten premisas verdaderas y conclusión falsa, por eso son formas inválidas. 4) EL MÉTODO DE DEDUCCIÓN NATURAL Este método sólo es posible en un lenguaje sintáctico, es decir, que sólo trabajamos con fórmulas sin contenido y, por lo tanto, ni verdaderas ni falsas. Reglas de Inferencia: 1-Reglas para el condicional 2- Reglas para la disyunción

3 3- Reglas para la conjunción 4- Reglas para la negación Las siguientes son aplicaciones incorrectas de la regla de simplificación: Son aplicaciones incorrectas porque no puedo simplificar ni aplicar ninguna regla a fórmulas que formen parte de fórmulas complejas( una fórmula negada es también una fórmula compleja). En el último caso sencillamente no puedo simplificar porque no es una conjunción. 4.1) Deducciones directas e indirectas Cuando no se puede llegar a la conclusión directamente aplicando reglas de inferencia a las premisas se puede dar un rodeo y probar indirectamente la conclusión. 1º paso: negar la conclusión que se quiere probar y agregar ese dato como un paso más en la cadena deductiva. Pero, en una deducción formal todo paso debe estar justificado. Entonces podemos justificar la negación del supuesto(conclusión ) mediante la regla del absurdo, y llamamos, al supuesto en cuestión "hipótesis del absurdo". 2º paso: Intentar obtener una contradicción, es decir, la conjunción de la fórmula y su contradicción. Esto se hace, ahora sí, aplicando directamente las reglas de inferencia a las premisas y a la hipótesis. Si llegamos a una contradicción, la regla nos autoriza a negar el supuesto que la originó, de ese modo, obtenemos la conclusión buscada. No hay que confundir la deducción indirecta o la regla del absurdo (las cuales prueban la validez del razonamiento) con el contraejemplo (que prueba la invalidez).

4 La regla del Absurdo expresa la contradicción ( B. B) en metalenguaje, eso quiere decir que podemos obtener cualquier contradicción. Son entonces también correctas las siguientes soluciones: 5) Los razonamientos inductivos y la inducción Razonamientos deductivos: la verdad de las premisas garantiza la verdad de la conclusión, esto es una característica muy importante de los razonamientos válidos. Razonamientos inductivos: - La verdad de la conclusión será probable y tendrá mayor posibilidad de ser verdadera cuanto mayor sea el número de casos. - La conclusión no se deduce, sino que se infiere en algún grado de posibilidad. - Las premisas adicionales modifican las probabilidades de la conclusión, haciéndola más o menos probable o incluso falsa si hubiera entre las premisas un caso contrario al enunciado general. ESTO NO OCURRE EN LOS RAZONAMIENTOS DEDUCTIVOS (a esta característica de los razonamientos deductivos se la denomina "propiedad de la monotonía".) - La conclusión siempre dice más que lo está contenido en las premisas (nos permite obtener un conocimiento nuevo). - Amplían el conocimiento pero al precio de garantizar la verdad de la conclusión. - El conocimiento que proporcionan es siempre FALIBLE. - En el inductivismo no es contradictorio afirmar mis premisas y negar mi conclusión. - La inducción va de los conocido a lo desconocido. - La verdad de las premisas no siguen la verdad de la conclusión. 5.1) Inducción por enumeración simple Razonamientos por numeración: Es afirmar una generalización basada en la observación de una muestra; es decir, se saca una conclusión acerca de todos los miembros de una clase a partir de premisas que se refieren a algunos miembros observados de la clase en cuestión.

5 Si los casos A observados poseen la propiedad B sólo en algún porcentaje, la conclusión será un enunciado general estadístico. En los razonamientos inductivos por enumeración, se sabe que a pesar de ser deductivamente inválidos, pueden ser correctos desde el punto de vista inductivo, y para eso existen 2 criterios que determinan, en principio, la corrección de estos razonamientos. Estos son: Criterio de cantidad: La cantidad de casos considerados debe ser un número suficientemente grande para poder generalizar. Criterio de calidad: La cantidad de casos considerados debe ser suficientemente variada, es decir, tiene que ser una muestra representativa, para poder generalizar. Inducción incorrecta: Cuando se generaliza a partir de unos pocos casos o cuando los casos considerados, aún en número suficiente, no son representativos de la totalidad de la población, se realiza una INDUCCIÓN INCORRECTA, es decir, una GENERALIZACIÓN ACCIDENTAL. Por ejemplo: Una encuesta electoral que considere una gran cantidad sólo del barrio de Lugano no es válida para la Capital Federal, puesto que no es representativa. Es importante mencionar que estos criterios poseen problemas, en el de cantidad no se puede determinar que cantidad de casos son necesarios. La cantidad depende del contexto. Por ejemplo, si uno pone las manos en el fuego y se quema, basta con hacerlo una vez para realizar una inducción a partir de una sólo caso; y en el de calidad o se puede establecer una muestra representativa sabiendo que el universo a considerar es infinito. 5.2) Otros razonamientos inductivos El conocimiento empírico (se apoya en razones parciales, no deductivas) y el conocimiento que proporcionan las ciencias fácticas están basados en razones no concluyentes. Se considera inductivo a todo tipo de razones (no necesariamente razonamientos inductivos) que proporcionen algún apoyo parcial, no concluyente, a alguna cuestión, por este motivo la experiencia, la observación (por ser falible) es una justificación inductiva. Silogismo Inductivo: Brindan apoyos parciales su conclusión. La conclusión no se deduce de las premisas. La 1º premisa establece la frecuencia con que se da cierta propiedad en los individuos de una clase. La 2º indica que un individuo pertenece a esa clase. La conclusión establece que también tiene esa propiedad. Por ejemplo: Forma Lógica: A tiene todas las propiedades de F, G, H y Z B tiene las propiedades de F, G y H B tiene las propiedades de Z En Ambos ejemplos las premisas no garantizan la verdad de la conclusión, sólo la toma como probable.

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

Filosofía de la ciencia: inducción y deducción. Metodología I. Los clásicos Prof. Lorena Umaña

Filosofía de la ciencia: inducción y deducción. Metodología I. Los clásicos Prof. Lorena Umaña Filosofía de la ciencia: inducción y deducción Metodología I. Los clásicos Prof. Lorena Umaña Filosofía de la ciencia: noción de argumento La filosofía de la ciencia debe considerarse como una de las corrientes

Más detalles

Razonamientos. Premisas Conclusión Premisas Conclusión V V V V V F F V F V F F F F

Razonamientos. Premisas Conclusión Premisas Conclusión V V V V V F F V F V F F F F 2.3.1.1 Validez e invalidez. Verdad y falsedad es una propiedad de las proposiciones o enunciados. Con las proposiciones o enunciados se pueden construir razonamientos. Pero los razonamientos no son ni

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO.

TEMA I. INTRODUCCIÓN A LA LÓGICA Y AL RAZONAMIENTO DEDUCTIVO. Lógica y razonamiento. La lógica es el estudio de los métodos que permiten establecer la validez de un razonamiento, entendiendo como tal al proceso mental que, partiendo de ciertas premisas, deriva en

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * FernandoRVelazquezQ@gmail.com Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA

LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA LÓGICA MATEMÁTICA O FORMAL O SIMBÓLICA La lógica formal o simbólica, a diferencia de la lógica clásica, utiliza un lenguaje artificial, es decir, está rigurosamente construido, no admite cambios en el

Más detalles

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente

Más detalles

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica?

Universidad Nacional Abierta y a Distancia UNAD-Lógica Matemática - Georffrey Acevedo G. A que viene la lógica? A que viene la lógica? Autor: Georffrey Acevedo G. Noviembre 16 de 2008. Los conceptos de proposiciones, conectivos e inferencias confluyen al analizar un razonamiento. Para tener claridad sobre los conceptos

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

Tema 6: Teoría Semántica

Tema 6: Teoría Semántica Tema 6: Teoría Semántica Sintáxis Lenguaje de de las las proposiciones Lenguaje de de los los predicados Semántica Valores Valores de de verdad verdad Tablas Tablas de de verdad verdad Tautologías Satisfacibilidad

Más detalles

UNIVERSIDAD NACIONAL DEL NORDESTE Facultad de Ciencias Económicas. Prof./Esp. Norma R. García

UNIVERSIDAD NACIONAL DEL NORDESTE Facultad de Ciencias Económicas. Prof./Esp. Norma R. García UNIVERSIDAD NACIONAL DEL NORDESTE Facultad de Ciencias Económicas Prof./Esp. Norma R. García UNIDAD II: CIENCIA Y LENGUAJE TEMA: Lenguaje Objeto y Metalenguaje. Lógica y Lenguaje. Sentencias y Argumentación.

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.

SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. sandraperilla@usantotomas.edu.co Carrera 9 No 51-11 Bogotá Colombia

Más detalles

Introducción: Proposiciones, argumentos e inferencias. Inferencias deductivas e inductivas. Deducción: Inferencias transitivas (Silogismos lineales)

Introducción: Proposiciones, argumentos e inferencias. Inferencias deductivas e inductivas. Deducción: Inferencias transitivas (Silogismos lineales) Tema 2.- Deducción. Psicología del Pensamiento, Guión del Tema 2 Prof.: Eduardo Madrid Bloque 1: Razonamiento y variedades del pensamiento. Introducción: Proposiciones, argumentos e inferencias. Inferencias

Más detalles

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román.

Inteligencia en Redes de Comunicaciones. Razonamiento lógico. Julio Villena Román. Inteligencia en Redes de Comunicaciones Razonamiento lógico Julio Villena Román jvillena@it.uc3m.es Índice La programación lógica Lógica de predicados de primer orden Sistemas inferenciales IRC 2009 -

Más detalles

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue

Más detalles

RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:

RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como: La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza mcsuarez@fi.upm.es Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad.

1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad. Tema 1 Lógica. 1.1 Cálculo proposicional. Definición 1.1 Una proposición es una frase o sentencia declarativa que es verdadera o falsa pero no ambas cosas a la vez. Los dos posibles valores de verdad que

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

REGLAS Y LEYES LOGICAS

REGLAS Y LEYES LOGICAS LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.

Más detalles

MÉTODOS DE LA INVESTIGACIÓN. Víctor Hugo Abril, Ph. D.

MÉTODOS DE LA INVESTIGACIÓN. Víctor Hugo Abril, Ph. D. MÉTODOS DE LA INVESTIGACIÓN Víctor Hugo Abril, Ph. D. 1 FRASE DE REFLEXIÓN "Quien estudia y trabaja sin método es como el navegante sin brújula" (Aura Babaresco de Prieto) 2 DEFINICIÓN DE MÉTODO El término

Más detalles

Área: Procesos de investigación. Lectura: La estructura del razonamiento en la investigación

Área: Procesos de investigación. Lectura: La estructura del razonamiento en la investigación Área: Procesos de investigación Lectura: La estructura del razonamiento en la investigación Caso: Los elementos y la estructura de algunos tipos de razonamientos Situación. Existen numerosos tipos de razonamientos,

Más detalles

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos

Más detalles

Cálculo Proposicional

Cálculo Proposicional Universidad Técnica ederico Santa María Departamento de Informática undamentos de Informática 1 Cálculo Proposicional Dr. Gonzalo Hernández Oliva Dr. Gonzalo Hernández USM I-1 Cálculo Proposicional 1 1)

Más detalles

Tema 9: Cálculo Deductivo

Tema 9: Cálculo Deductivo Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo jbajo@fi.upm.es Madrid, España 24/10/2012 Introducción a la

Más detalles

Más sobre Leyes de implicación

Más sobre Leyes de implicación Más sobre Leyes de implicación Dilema constructivo. Se abrevia d.c. Se considera que si hay una disyunción que contiene los antecedentes de dos condicionales, la conclusión será la disyunción de los consecuentes.

Más detalles

ÍNDICE PRIMERA PARTE METODOLOGÍA JURÍDICA

ÍNDICE PRIMERA PARTE METODOLOGÍA JURÍDICA ÍNDICE INTRODUCCIÓN... 15 PRIMERA PARTE METODOLOGÍA JURÍDICA INTRODUCCIÓN... 21 CAPÍTULO I. LA APLICACIÓN DEL DERECHO. CASOS FÁCILES, CASOS DIFÍCILES Y JUSTIFICACIÓN DE LA RESPUESTA... 25 1. INTRODUCCIÓN...

Más detalles

Forma lógica de enunciados

Forma lógica de enunciados Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido

Más detalles

La forma general de toda proposición categórica es la siguiente: cuantificador + sujeto + cópula + predicado

La forma general de toda proposición categórica es la siguiente: cuantificador + sujeto + cópula + predicado 1.5 Proposiciones categóricas Las proposiciones categóricas son aquéllas que hacen afirmaciones incondicionales. Por ejemplo, todos los hombres son mortales es una proposición categórica, mientras que

Más detalles

Interpretación y Argumentación Jurídica

Interpretación y Argumentación Jurídica Interpretación y Argumentación Jurídica INTERPRETACIÓN Y ARGUMENTACIÓN JURÍDICA 1 Sesión No. 10 Nombre: La Argumentación Jurídica Contextualización Como ya se ha visto, un argumento es una afirmación que

Más detalles

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones

Más detalles

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra. Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas

Más detalles

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes

Más detalles

Epistemología y Evolución del Pensamiento Científico Cuadernillo para el cursado

Epistemología y Evolución del Pensamiento Científico Cuadernillo para el cursado Epistemología y Evolución del Pensamiento Científico Cuadernillo para el cursado 2015 Universidad Nacional de Tucumán Fac. Bioquímica Química y Farmacia Profesores: Titular: Dra. María Natalia Zavadivker

Más detalles

Lógica. Matemática discreta. Matemática discreta. Lógica

Lógica. Matemática discreta. Matemática discreta. Lógica Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo

Más detalles

RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA

RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA ESCUELA DEL MINISTERIO PÚBLICO Dr. Gonzalo Ortiz de Zevallos Roedel RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA Dr. Luis Alberto Pacheco Mandujano Gerente Central de la Escuela del Ministerio Público

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1

Más detalles

3. OBJETIVOS ESPECÍFICOS (De formación académica): Como resultado de cada capítulo el estudiante estará en capacidad de:

3. OBJETIVOS ESPECÍFICOS (De formación académica): Como resultado de cada capítulo el estudiante estará en capacidad de: MATERIA Lógica y Argumentación. CÓDIGO 08273 PRERREQUISITOS: Ninguno. PROGRAMAS: Todos los programas de pregrado. PERÍODO ACADÉMICO: 162-2 (Segundo semestre de 2016) INTENSIDAD HORARIA: 4 horas semanales

Más detalles

PROCESO DE PLANEACIÓN DIDÁCTICA DEL PROYECTO INTEGRADOR DE

PROCESO DE PLANEACIÓN DIDÁCTICA DEL PROYECTO INTEGRADOR DE PROCESO DE PLANEACIÓN DIDÁCTICA DEL PROYECTO INTEGRADOR DE 1er. SEMESTRE. CBU 2015. LÓGICA Eje: Salud adolescente y práctica de habilidades sociales: convivencia y prevención de la violencia. Proyecto:

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

Examen final de Lógica y argumentación (Fecha: xxxxxxxx)

Examen final de Lógica y argumentación (Fecha: xxxxxxxx) 1 Examen final de Lógica y argumentación (Fecha: xxxxxxxx) Nombre: Código: Profesor y grupo: 1. 1 (6%) Construya un silogismo de forma: oao-3, con estas especificaciones: Término mayor: Rascacielos Término

Más detalles

Tema 7. El problema de los condicionales

Tema 7. El problema de los condicionales Tema 7. El problema de los condicionales (Capítulo 3 de S. Read, Thinking about Logic, pp. 64-95) Cuál es el problema que plantean a la lógica los enunciados condicionales? El de formular sus condiciones

Más detalles

yo sé que el sol saldrá mañana, por que lo he visto salir todos los días

yo sé que el sol saldrá mañana, por que lo he visto salir todos los días 1. - Lea lo siguiente: yo sé que el sol saldrá mañana, por que lo he visto salir todos los días El enunciado anterior es un ejemplo de razonamiento de tipo A) Silogístico B) Inductivo C) Analógico D) Intuitivo

Más detalles

Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid

Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo

Más detalles

Lógica Matemática, Sistemas Formales, Cláusulas de Horn

Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición

Más detalles

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.

Más detalles

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Más detalles

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños

MATEMÁTICA 1 JRC El futuro pertenece a aquellos que creen en la belleza de sus sueños MATEMÁTICA 1 JRC LÓGICA Es la ciencia formal que estudia los principios y procedimientos que permiten demostrar la validez o invalidez de una inferencia, es decir, reconocer entre un razonamiento correcto

Más detalles

CONOCER. Proceso intelectual por el cual se establece una relación directa entre un sujeto (quien conoce) y un objeto conocido (la realidad)

CONOCER. Proceso intelectual por el cual se establece una relación directa entre un sujeto (quien conoce) y un objeto conocido (la realidad) CONOCIMIENTO CONOCER Proceso intelectual por el cual se establece una relación directa entre un sujeto (quien conoce) y un objeto conocido (la realidad) CONOCIMIENTO ACTIVIDAD POR MEDIO DEL CUAL ADQUIRIMOS

Más detalles

Apuntes de Lógica Proposicional

Apuntes de Lógica Proposicional Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias

Más detalles

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

SESIÓN 04 LÓGICA PROPOSICIONAL

SESIÓN 04 LÓGICA PROPOSICIONAL SESIÓN 04 LÓGICA PROPOSICIONAL La Lógica Proposicional, sentencial o lógica de enunciados, es la parte de la Lógica simbólica que trata de las proposiciones sin analizarlas y de sus combinaciones. 1. PROPOSICIONES

Más detalles

Algoritmos y Estructura de Datos I

Algoritmos y Estructura de Datos I Clase práctica de Especificación - Lógica proposicional Viernes 20 de Marzo de 2015 Menú del día Fórmulas bien formadas Tablas de verdad Tautologías, Contingencias y Contradicciones Relación de fuerza

Más detalles

JUSTIFICACION DE LAS DECISIONES JUDICIALES

JUSTIFICACION DE LAS DECISIONES JUDICIALES JUSTIFICACION DE LAS DECISIONES JUDICIALES Según Robert S. Summers Atienza, Manuel. LAS RAZONES DEL DERECHO. Teorías de la Argumentación Jurídica. UNAM. México. 2008 Robert S. Summers es licenciado en

Más detalles

CLASIFICACIÓN DE LAS CIENCIAS

CLASIFICACIÓN DE LAS CIENCIAS LECCIÓN Nº 13 CLASIFICACIÓN DE LAS CIENCIAS OBJETIVO ESPECÍFICO: Reconocer la clasificación de las ciencias de las ciencias. PROPÓSITO: Los alumnos reconocerán el ordenamiento de las ciencias. 1.-CRITERIOS

Más detalles

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]

2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )] Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la

Más detalles

10.4 Sistemas de ecuaciones lineales

10.4 Sistemas de ecuaciones lineales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #11: martes, 14 de junio de 2016. 10.4 Sistemas de ecuaciones lineales

Más detalles

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria)

TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMAS DE MATEMÁTICAS (Oposiciones de Secundaria) TEMA 70 LÓGICA PROPOSICIONAL. EJEMPLOS Y APLICACIONES AL RAZONAMIENTO MATEMÁTICO. 1. Introducción. 2. El Lenguaje para la Lógica de Proposiciones. 2.1.

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Si..., siempre que, con tal que, puesto que, ya que, porque, cuando, de, a menos que, a no ser que, salvo que, solamente.

Si..., siempre que, con tal que, puesto que, ya que, porque, cuando, de, a menos que, a no ser que, salvo que, solamente. 1.2 Proposiciones condicionales y equivalencia lógica. Proposición Condicional o implicación lógica Una proposición condicional, es aquella que está formada por dos proposiciones atómicas o moleculares,

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través

Más detalles

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por

Más detalles

Hoja de ruta IPC. Secuencia recomendada para el uso de los materiales de estudio. - Argumentos y teorías: Capítulo 1. - Guía de Estudio: Unidad 1

Hoja de ruta IPC. Secuencia recomendada para el uso de los materiales de estudio. - Argumentos y teorías: Capítulo 1. - Guía de Estudio: Unidad 1 Programa Ejes temáticos Secuencia recomendada para el uso de los materiales de estudio Secuencia de realización de actividades propuestas Encuentro Unidad 1 Consideraciones sobre el lenguaje 1.1. Lenguaje

Más detalles

Programa de Lógica para la solución de problemas

Programa de Lógica para la solución de problemas Programa de Lógica para la solución de problemas Octubre del 2006 B @ UNAM Asignatura: Lógica para la solución de problemas Plan: 2006 Créditos: 10 Bachillerato: Módulo 2 Tiempo de dedicación total: 80

Más detalles

RAZONAMIENTO MATEMÁTICO

RAZONAMIENTO MATEMÁTICO RAZONAMIENTO MATEMÁTICO I. LÓGICA PROPOSICIONAL A. Proposiciones B. Conectivos proposicionales B.. Negación B.2. Conjunción B.3. Disyunción B.4. Condicional B.5. Bicondicional B.6. Otros conectivos C.

Más detalles

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones

Objetivos formativos de Matemática Discreta. Tema 1: Conjuntos, aplicaciones y relaciones Objetivos formativos de Matemática Discreta Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera

Más detalles

E S T A D Í S T I C A

E S T A D Í S T I C A Tema 1. Estadística Todos los días haces acopio de datos e información de distintas fuentes con el fin de tomar decisiones, revisas en internet el reporte meteorológico y así decidir que ropa vas a usar,

Más detalles

El método deductivo: es aquel que parte de datos generales aceptados como validos para llegar a una conclusión de tipo particular.

El método deductivo: es aquel que parte de datos generales aceptados como validos para llegar a una conclusión de tipo particular. Que es el conocimiento? La metodología Dicho determino esta compuesto del vocablo método y el sustantivo griego logos que significa juicio, estudio, esta palabra se puede definir como La descripción, el

Más detalles

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN

APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente

Más detalles

1. A qué siglo y a qué movimiento histórico pertenece Kant? 2. Cuáles son las cuatro preguntas que se propone contestar Kant con su filosofía?

1. A qué siglo y a qué movimiento histórico pertenece Kant? 2. Cuáles son las cuatro preguntas que se propone contestar Kant con su filosofía? EXAMEN DE KANT 1 1. EXAMEN DE KANT 1. A qué siglo y a qué movimiento histórico pertenece Kant? 2. Cuáles son las cuatro preguntas que se propone contestar Kant con su filosofía? 3. Cuál es el problema

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 6 Nombre: Álgebra Booleana Objetivo Durante la sesión el participante identificará las principales características

Más detalles

Capítulo 1 Lógica Proposicional

Capítulo 1 Lógica Proposicional Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases

Más detalles

2. METODOLOGÍA. Los tipos fundamentales de Estudios de Investigación, como nos recuerda Bavaresco, son cuatro:

2. METODOLOGÍA. Los tipos fundamentales de Estudios de Investigación, como nos recuerda Bavaresco, son cuatro: 2. METODOLOGÍA Para llevar a cabo este estudio es necesario utilizar una metodología de investigación, debido a que el no contar con los métodos y técnicas necesarias que nos guíen a través de una investigación

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

" Utilizan elementos homogéneos con aquello que quieren explicar.

 Utilizan elementos homogéneos con aquello que quieren explicar. ORIGEN DE LA FILISOFÍA? Etimológicamente la palabra filosofía procede del griego: Phylos: amor, amistad... Sophya: sabiduría La filosofía surge de la ADMIRACIÓN que nos producen los fenómenos naturales

Más detalles

Las falacias que se autorefutan y la consequentia mirabilis Carlos A. Oller Departamento de Filosofía UBA IdIHCS-FaHCE-UNLP

Las falacias que se autorefutan y la consequentia mirabilis Carlos A. Oller Departamento de Filosofía UBA IdIHCS-FaHCE-UNLP IX Jornadas de Investigación del Departamento de Filosofía FaHCE-UNLP Las falacias que se autorefutan y la consequentia mirabilis Carlos A. Oller Departamento de Filosofía UBA IdIHCS-FaHCE-UNLP Resumen:

Más detalles

Funciones y Cardinalidad

Funciones y Cardinalidad Funciones y Cardinalidad Definición 1 Llamaremos función f entre dos conjuntos A y B a una relación que verifica las siguientes propiedades: i) Dom(f) = A ii) Si (a, b), (a, c) f entonces b = c Dicho de

Más detalles

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES

GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES GUÍA DE EJERCICIOS CONCEPTOS FUNDAMENTALES Área Resultados de aprendizaje Identifica, conecta y analiza conceptos básicos de química para la resolución de ejercicios, desarrollando pensamiento lógico y

Más detalles

CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES

CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

EPISTEMOLOGIA I CORRIENTES EPISTEMOLOGICAS

EPISTEMOLOGIA I CORRIENTES EPISTEMOLOGICAS EPISTEMOLOGIA I CORRIENTES EPISTEMOLOGICAS La idea de Revolución Científica interpretada a la luz de los paradigmas. La integración del conocimiento científico y la toma de posturas para el esclarecimiento

Más detalles

Operaciones con conjuntos (ejercicios)

Operaciones con conjuntos (ejercicios) Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:

Más detalles

DE LOS NÚMEROS NATURALES Y ENTEROS

DE LOS NÚMEROS NATURALES Y ENTEROS Capítulo 2 DE LOS NÚMEROS NATURALES Y ENTEROS Objetivo general Presentar y afianzar algunos conceptos de los números naturales y números enteros relacionados con el estudio de la matemática discreta. Objetivos

Más detalles

Índice general. I Introducción a la Lógica 3

Índice general. I Introducción a la Lógica 3 Índice general I Introducción a la Lógica 3 1 Demostraciones 5 1.1. Argumentos rodeados de agua....................... 5 1.1.1. Argumentando........................... 6 1.1.2. Formalizando el argumento....................

Más detalles

La Lógica. Grado Décimo GRUPO CUATRO. Ficha No. 003 MARZO 3 de 2016

La Lógica. Grado Décimo GRUPO CUATRO. Ficha No. 003 MARZO 3 de 2016 La Lógica Grado Décimo GRUPO CUATRO 1 PUEDE PROBARSE TODO? El ideal de un método estrictamente científico de la matemática, que he tratado de realizar aquí, y que bien pudiera ser denominado euclídeo,

Más detalles

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional

Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional Asignatura: Matemática Fundamental [405036M-02] Taller 1 Lenguaje Simbólico y lógica proposicional 1. Responda las siguientes preguntas: a) Qué es un lenguaje formal? b) Qué es lenguaje matemático? c)

Más detalles

2 experiencia empírica contiene saberes acerca de aspectos de la realidad que no son accesibles a la experiencia empírica, tales como un saber con res

2 experiencia empírica contiene saberes acerca de aspectos de la realidad que no son accesibles a la experiencia empírica, tales como un saber con res LAS AFIRMACIONES VERDADERAS ACERCA DE LA REALIDAD NO EXPERIMENTABLE EMPÍRICAMENTE COMO FUNDAMENTO FUNDAMENTAL DE UNA METAFÍSICA DESPUÉS DE LAS OBJECIONES DE KANT Y DEL POSITIVISMO LÓGICO La pretensión

Más detalles

Eje 2. Razonamiento lógico matemático

Eje 2. Razonamiento lógico matemático Razonamiento deductivo e inductivo La historia de las matemáticas se remonta al antiguo Egipto y Babilonia. Ante la necesidad de resolver problemas a través de errores y victorias, estas culturas lograron

Más detalles

LÓGICA Y PENSAMIENTO CRÍTICO

LÓGICA Y PENSAMIENTO CRÍTICO LÓGICA Y PENSAMIENTO CRÍTICO La disciplina en el pensamiento, como piedra angular de la generación del conocimiento, ha sido reconocida desde la antigüedad y se ha valorado cada día más con un elemento

Más detalles

LÓGICA PROPOSICIONAL

LÓGICA PROPOSICIONAL LÓGICA PROPOSICIONAL QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente.

Más detalles

Tópicos de Matemáticas Discretas

Tópicos de Matemáticas Discretas Tópicos de Matemáticas Discretas Proposiciones Lógicas y Tablas de Verdad Raquel Torres Peralta Universidad de Sonora Matemáticas Discretas Proposiciones Lógicas Matemáticas Discretas Lógica - La lógica

Más detalles

LAS RAZONES DEL DERECHO Teorías de la argumentación jurídica

LAS RAZONES DEL DERECHO Teorías de la argumentación jurídica LAS RAZONES DEL DERECHO Teorías de la argumentación jurídica Manuel Atienza Catedrátido de Filosofía del Derecho en la Universidad de Alicante - España LAS RAZONES DEL DERECHO Teorías de la argumentación

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles
SitemapPunjabi Beat | Watch movie | 2 baby na mizine