LÓGICA PROPOSICIONAL


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÓGICA PROPOSICIONAL"

Transcripción

1 LÓGICA PROPOSICIONAL

2 QUE ES LA LÓGICA? El sentido ordinario de la palabra lógica se refiere a lo que es congruente, ordenado, bien estructurado. Lo ilógico es lo mismo que incongruente, desordenado, incoherente. Esto se aplica tanto a las personas como a las situaciones y a los pensamientos.

3 QUE ES LA LÓGICA? La palabra lógica nos indica ya en su origen etimológico (logos = conocimiento, sabiduría) el sentido básico de esta ciencia, que se eleva hasta el espíritu y el pensamiento, la razón y la inteligencia. De esta manera definimos nominalmente la lógica como: La ciencia del pensamiento y la razón.

4 PARA QUE SIRVE LA LÓGICA? La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un argumento es válido. La lógica es ampliamente aplicada en la filosofía, matemáticas, computación, física. En la filosofía para determinar si un razonamiento es válido o no, ya que una frase puede tener diferentes interpretaciones, sin embargo la lógica permite saber el significado correcto. En las matemáticas para demostrar teoremas e inferir resultados que puedan ser aplicados en investigaciones. En la computación para revisión y creación de programas (software).

5 PARA QUE SIRVE LA LÓGICA? En general la lógica se aplica en la tarea diaria, ya que cualquier trabajo que se realiza tiene un procedimiento lógico, por el ejemplo; para ir de compras al supermercado una ama de casa tiene que realizar cierto procedimiento lógico que permita realizar dicha tarea. Si una persona desea pintar una pared, este trabajo tiene un procedimiento lógico, ya que no puede pintar si antes no prepara la pintura, o no debe pintar la parte baja de la pared si antes no pintó la parte alta porque se mancharía lo que ya tiene pintado.

6 PARA QUE SIRVE LA LÓGICA? La lógica es pues muy importante; ya que permite resolver incluso problemas a los que nunca se ha enfrentado el ser humano utilizando solamente su inteligencia y apoyándose de algunos conocimientos acumulados, se pueden obtener nuevos inventos, innovaciones a los ya existentes o simplemente utilización de los mismos.

7 LÓGICA PROPOSICIONAL La lógica proposicional es la parte de la lógica que estudia la formación de proposiciones complejas a partir de proposiciones simples, y la inferencia de proposiciones a partir de proposiciones, pero sin tener en cuenta la estructura interna de las proposiciones más simples.

8 PROPOSICIONES Una proposición es una afirmación que comunica una idea verdadera o falsa. Ejemplos: Determinar cuáles de las siguientes expresiones son proposiciones: El murciélago es un animal mamífero. Es una proposición porque se puede afirmar si el murciélago es o no es un animal mamífero. Cuál es tu nombre? No es una proposición ya que no se puede afirmar si la pregunta es verdadera o falsa.

9 PROPOSICIONES Una proposición es una afirmación que comunica una idea verdadera o falsa. Ejemplos: (continuación ) Determinar cuáles de las siguientes expresiones son proposiciones: Hola! No es una proposición, es una exclamación que indica saludo, por lo tanto, no se puede determinar su valor de verdad. Colombia No es una proposición, es un nombre y no tiene valor de verdad.

10 PROPOSICIONES CONSIDERACIONES: Las preguntas, ordenes y exclamaciones no son consideradas proposiciones porque no se puede afirmar que son verdaderas o falsas. Para nombrar proposiciones, habitualmente, se utilizan letras minúsculas. Las más empleadas son p, q, r, s y t, aunque no son las únicas. Cuando se establece si una proposición es verdadera o falsa se está determinando su valor de verdad.

11 PROPOSICIONES Ejemplos: Escribir la expresión como una proposición. Luego, determinar su valor de verdad: 1. Michael Phelps fue el campeón de natación en los Juegos Olímpicos de Beijíng Para escribir la expresión como una proposición, se le asigna una letra que la represente: r: Michael Phelps fu el campeón de natación en los Juegos Olímpicos de Beijing (Utilizamos en este caso la letra r ) El valor de verdad es decir si la proposición es verdadera o falsa: Es una proposición verdadera ya que, en efecto, Phelps fue quien ganó más medallas en este deporte.

12 PROPOSICIONES Ejemplos: Establecer el valor de verdad de las siguientes proposiciones: q: España es el campeón mundial de fútbol del año Esta proposición es verdadera, pues España ganó la final de fútbol en el año t: Junio es el quinto mes del año. La proposición es falsa. Al enumerar los meses se puede apreciar que junio es el sexto mes del año y no el quinto. r: 2 elevado a la 3 es = 8, la proposición es verdadera porque 2 X 2 X 2 = 8.

13 PROPOSICIONES SIMPLES. Una proposición simple es una afirmación conformada por una sola oración gramatical. Ejemplo: La proposición, r: Un triángulo equilátero es aquel cuyos lados tienen la misma medida Es una proposición simple, puesto que está conformada por una sola oración. La proposición, q: Cinco es un número impar y también es un número primo. No es una proposición simple porque está formada por dos oraciones.

14 NEGACIÓN DE PROPOSICIONES SIMPLES. Cuando se niega una proposición simple se cambia su valor de verdad. Es decir, algo que era verdadero se vuelve falso y algo quo era falso se convierte en verdadero. Para negar una proposición simple se le antepone la expresión no es verdad que o se le incluye un no para que cambie su significado a exactamente lo contrario. El símbolo que indica la negación de una proposición es ~, se usa así: ~p, y se lee no p. Ejemplo: q: Bogotá está 1600 metros más cerca de las estrellas Se niega la proposición q como ~q y se Lee no q es decir, no es verdad que Bogotá está metros más cerca de las estrellas, o, Bogotá no está metros más cerca de las estrellas

15 PROPOSICIONES COMPUESTAS Una proposición compuesta es una afirmación conformada por dos o más proposiciones simples que se conectan usando las palabras y, o, si... entonces, si y solo si. Es importante tener en cuenta que en una proposición compuesta se combinan las ideas de las proposiciones simples que la forman para dar origen a una nueva idea más elaborada. Ejemplo: Así que si se tienen dos proposiciones simples como: p: Simón es un hombre trabajador. q: Es una persona amigable. Se puede generar una proposición compuesta que integre las dos ideas que diga: Simón es un hombre trabajador y es una persona amigable. La palabra que se emplea para conectar las dos proposiciones simples es y.

16 CONECTIVOS LÓGICOS Los conectivos lógicos o conectores son palabras que vinculan las ideas expresadas en dos o más proposiciones simples, para comunicar algo más complejo. Los conectivos lógicos están identificados con un símbolo especial y un nombre que representan la función que cumplen.

17 CONECTIVOS LÓGICOS Ejemplos: Escribir las siguientes proposiciones compuestas usando los símbolos lógicos: Si la figura es un cuadrilátero entonces tiene cuatro lados. Asignando p: La figura es un cuadrilátero q: Tiene cuatro lados La representación sería: p q Irás al paseo si y sólo si te portas bien en clase. Asignando r: Irás al paseo s: Te portas bien en clase. La representación sería: r s

18 CONJUNCIÓN. La conjunción es una operación lógica que usa el conectivo y relacionar dos proposiciones simples y construir una proposición compuesta para simbolizar la conjunción de dos proposiciones r y s se escribe r ʌ s y se lee r y s. En la conjunción p ʌ q es importante tener en cuenta que la proposición compuesta es verdadera solo si p y q son verdaderas, en cualquier otro caso es falsa. Cuando se establece la conjunción entre dos proposiciones p y q, se da a entender que tanto la idea que expresa p como la que expresa q deben cumplirse (inclusión). Ejemplo: si p, q son las proposiciones: p: Cinco es un número primo. q: Es impar. Se escribe p ʌ q y se lee: Cinco es un número primo y es impar.

19 DISYUNCIÓN. La disyunción de dos proposiciones simples se obtiene usando el conectivo lógico o. Es importante tener en cuenta que la proposición r V s es falsa, únicamente cuando las dos proposiciones r y s, son falsas. Por ejemplo, si r y s son las proposiciones: r: Seis es un número mayor que cinco. s: Seis es un número menor que tres. Se escribe r V s, y se lee: Seis es un número mayor que cinco o seis es un número menor que tres.

20 IMPLICACIÓN. La implicación de dos proposiciones simples se obtiene utilizando el conectivo lógico si entonces. La implicación entre dos proposiciones simples t y k se escribe t k y se lee si t entonces k. Es importante tener en cuenta que entre dos proposición t y k es falsa, solo cuando t es verdadero y k es falsa. Por ejemplo, si t y k son las proposiciones: t: Francisco estudia. k: Aprobará el año. Se escribe t k, y se lee: Si Francisco estudia entonces aprobará el año

21 EQUIVALENCIA. La equivalencia entre dos proposiciones simples se establece utilizando el conectivo lógico si y solo sí. Para representar la equivalencia entre dos proposiciones m y v se escribe m v y se lee m si y solo si v. La equivalencia entre dos proposiciones simples es verdadera cuando ambas son verdaderas o cuando ambas son falsas. Por ejemplo, si m y v son las proposiciones: m: Van de paseo por el eje cafetero. v: Ahorran todo el año. Se escribe t k, y se lee: Van de paseo por el eje cafetero si y solo si ahorran todo el año.

22 PARA FINALIZAR Para identificar el valor de verdad de proposiciones compuestas, deben tener en cuenta las indicaciones dadas: Negación: Cuando se niega una proposición simple se cambia su valor de verdad. Conjunción entre p ʌ q es importante tener en cuenta que la proposición compuesta es verdadera solo si p y q son verdaderas, en cualquier otro caso es falsa. Disyunción: Es importante tener en cuenta que la proposición r V s es falsa, únicamente cuando las dos proposiciones r y s, son falsas. Implicación: Es importante tener en cuenta que entre dos proposición t y k es falsa, solo cuando t es verdadero y k es falsa. Equivalencia entre dos proposiciones simples es verdadera cuando ambas son verdaderas o cuando ambas son falsas.

23 GRACIAS

UNIDAD I: LÓGICA MATEMÁTICA

UNIDAD I: LÓGICA MATEMÁTICA UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

Capítulo 4. Lógica matemática. Continuar

Capítulo 4. Lógica matemática. Continuar Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además

Más detalles

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la

La Lógica estudia la forma del razonamiento. La Lógica Matemática es la disciplina que trata de métodos de razonamiento. En un nivel elemental, la LÓGICA MATEMÁTICA OBJETIVOS Definirás proposición simple. Definirás proposiciones compuestas: Disyunción y conjunción. Relacionarás dichas proposiciones con las operaciones de conjuntos: unión e intersección.

Más detalles

Matemáticas I. Unidad temática I.- Lógica Matemática I.S.C. Iván de J. Moscoso Navarro

Matemáticas I. Unidad temática I.- Lógica Matemática I.S.C. Iván de J. Moscoso Navarro Materia: Matemáticas I Unidad temática I.- Lógica Matemática Catedrático: I.S.C. Iván de J. Moscoso Navarro Palabras clave: Lógica matemática, proposición, tautología, contradicción, operadores lógicos,

Más detalles

TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q

TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la

Más detalles

Lógica proposicional

Lógica proposicional Lógica proposicional La palabra lógica viene del griego y significa, razón, tratado o ciencia. En matemáticas es la ciencia que estudia los métodos de razonamiento proporciona reglas y técnicas para determinar

Más detalles

RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como:

RAZONAMIENTO LÓGICO LECCIÓN 1: ANÁLISIS DEL LENGUAJE ORDINARIO. La lógica se puede clasificar como: La lógica se puede clasificar como: 1. Lógica tradicional o no formal. 2. Lógica simbólica o formal. En la lógica tradicional o no formal se consideran procesos psicológicos del pensamiento y los métodos

Más detalles

IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA DESARROLLO DE LA ACTIVIDAD. p, q, r, s

IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA DESARROLLO DE LA ACTIVIDAD. p, q, r, s PROGRAMA DE FORMACIÓN UNIDAD DE APRENDIZAJE ACTIVIDAD OBJETIVOS IDENTIFICACIÓN DE LA ACTIVIDAD PEDAGÓGICA Colegio técnico uparsistem Matematica sexto PROPOSICIONES Y TABLA DE LA VERDAD (CONJUNCIÓN, DISYUNCIÓN,

Más detalles

Un enunciado es toda frase u oración que se emite

Un enunciado es toda frase u oración que se emite OBJETIO 2: Aplicar la lógica proposicional y la lógica de predicados en la determinación de la validez de una proposición dada. Lógica Proposicional La lógica proposicional es la más antigua y simple de

Más detalles

Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden

Lógica Matemática. Contenido. Definición. Finalidad de la unidad. Proposicional. Primer orden Contenido Lógica Matemática M.C. Mireya Tovar Vidal Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Definición Traducir enunciados

Más detalles

CIENCIAS FORMALES CIENCIAS FÁCTICAS

CIENCIAS FORMALES CIENCIAS FÁCTICAS UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO

Más detalles

Lógica Matemática. Operadores Lógicos. Universidad del Azuay - Marcos Orellana Cordero

Lógica Matemática. Operadores Lógicos. Universidad del Azuay - Marcos Orellana Cordero Lógica Matemática Operadores Lógicos Introducción La lógica proposicional inicia con las proposiciones y los conectores lógicos. A partir de la combinación de dos proposiciones por medio de un conector

Más detalles

Lógica Proposicional. Cátedra de Matemática

Lógica Proposicional. Cátedra de Matemática Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un

Más detalles

Enunciados Abiertos y Enunciados Cerrados

Enunciados Abiertos y Enunciados Cerrados I n g. L u z A d r i a n a M o n r o y M a r t í n e z L ó g i c a 1 Unidad II lógica proposicional Es probable que en el siglo IV antes de la Era Común, se iniciara con Aristóteles el estudio de la Lógica;

Más detalles

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos).

Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). Lógica intuitiva Una proposición es una afirmación que debe ser cierta o falsa (aunque no lo sepamos). A : Las águilas vuelan B : El cielo es rosa C : No existe vida extraterrestre D : 5 < 3 E : Algunos

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012

Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013

Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS LIC. ESP. DANIEL SAENZ CONTRERAS

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS LIC. ESP. DANIEL SAENZ CONTRERAS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER 1 FACULTAD DE CIENCIAS BÁSICAS LIC. ESP. DANIEL SAENZ CONTRERAS EMAIL SAENZCODANIEL@HOTMAIL.COM LÓGICA DE PROPOSICIONES TABLAS DE VERDAD La tabla de verdad de una

Más detalles

Guía para el estudiante

Guía para el estudiante Guía para el estudiante Guía realizada por Jefferson Bustos Profesional en Matemáticas Master en Educación Nombre: Fecha: Curso: Dentro del lenguaje común, las palabras y frases pueden tener diversas interpretaciones.

Más detalles

P r o p o s i c i ó n

P r o p o s i c i ó n P r o p o s i c i ó n Es toda oración o enunciado al que se le puede asignar un cierto valor (v o f). Si no puede concluir que es verdadero o falso no es proposición. La verdad o falsedad de una proposición

Más detalles

Introducción a la Lógica

Introducción a la Lógica Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Lógica proposicional. 1. Lógica proposicional. 4. Conectivos lógicos. 2. Proposición lógica. 3. Negación de una proposición

Lógica proposicional. 1. Lógica proposicional. 4. Conectivos lógicos. 2. Proposición lógica. 3. Negación de una proposición Lógica proposicional 1. Lógica proposicional Es una parte de la lógica que estudia las proposiciones y la relación existente entre ellas, así como la función que tienen los conectivos lógicos. 2. Proposición

Más detalles

Introducción a la lógica. Matemáticas Discretas Universidad de san buenaventura Cali

Introducción a la lógica. Matemáticas Discretas Universidad de san buenaventura Cali Introducción a la lógica Matemáticas Discretas Universidad de san buenaventura Cali Proposiciones compuestas (Disyunción, Conjunción, Negación, Condicional, Bicondicional) DISYUNCIÓN (v) La disyunción

Más detalles

En general, se considera válido un razonamiento cuando sus premisas ofrecen soporte suficiente a su conclusión.

En general, se considera válido un razonamiento cuando sus premisas ofrecen soporte suficiente a su conclusión. Se llama razonamiento lógico al proceso mental de realizar una inferencia de una conclusión a partir de un conjunto de premisas. La conclusión puede no ser una consecuencia lógica de las premisas y aun

Más detalles

Introducción. Ejemplos de expresiones que no son proposiciones

Introducción. Ejemplos de expresiones que no son proposiciones Introducción El objetivo de los matemáticos es descubrir y comunicar ciertas verdades. Las matemáticas son el lenguaje de los matemáticos y una demostración, es un método para comunicar una verdad matemática

Más detalles

La Lógica Proposicional

La Lógica Proposicional La Lógica Proposicional 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera o falsa. Las proposiciones

Más detalles

03. Introducción a los circuitos lógicos

03. Introducción a los circuitos lógicos 03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS

Más detalles

MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones

MATEMÁTICAS DISCRETAS. UNIDAD1 Lógica y Demostraciones MATEMÁTICAS DISCRETAS UNIDAD1 Lógica y Demostraciones Para el estudio de esta unidad debe ubicarse en el Capítulo 1 del texto base, lea atentamente cada uno de los subtemas indicados en el índice de la

Más detalles

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS

MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS 23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra.

encontramos dos enunciados. El primero (p) nos afirma que Pitágoras era griego y el segundo (q) que Pitágoras era geómetra. Álgebra proposicional Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases u oraciones. Estas

Más detalles

Matemáticas - Guía 1 Proposiciones

Matemáticas - Guía 1 Proposiciones LOGROS: 1. Reconoce el conceto e roosición. 2. Clasifica las roosiciones en simles y comuestas. 3. Resuelve roosiciones comuestas utilizando los conectivos lógicos. 4. Halla el valor de verdad de una roosición

Más detalles

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional

Material diseñado para los estudiantes del NUTULA, alumnos del profesor Álvaro Moreno.01/10/2010 Lógica Proposicional Lógica Proposicional INTRODUCCIÓN El humano se comunica con sus semejantes a través de un lenguaje determinado (oral, simbólico, escrito, etc.) construido por frases y oraciones. Estas pueden tener diferentes

Más detalles

LOGICA MATEMATICA. El dar un juicio nos permite comparar las características primarias o secundarias del objeto o termino y valorarlas

LOGICA MATEMATICA. El dar un juicio nos permite comparar las características primarias o secundarias del objeto o termino y valorarlas DEINICIÓN ETIMOLÓGICA DE LÓGICA EL término LOGICA viene de dos voces griegas: Logos, que significa palabra, tratado, pensamiento o razón e icos que significa relacionado con, por lo tanto lógica significa

Más detalles

Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2

Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2 Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa *. 1. Lógica

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo. Contenidos Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 1: Lunes 11 Viernes 16 de Marzo Complementos Contenidos Clase 1: Elementos de lógica: Conectivos, tablas de verdad, tautologías y contingencias.

Más detalles

No son proposiciones por no poder ser evaluadas como verdaderas ni falsas. Las exclamaciones, órdenes ni las preguntas son proposiciones

No son proposiciones por no poder ser evaluadas como verdaderas ni falsas. Las exclamaciones, órdenes ni las preguntas son proposiciones RESOLUCION Nº 03871 DE 07 DE NOIEMBRE DE 2012 ERSION 1.0 EJES TEMÁTICOS Proposiciones Teoría de conjuntos Sistemas de numeración a) Levántate temprano! b) Has entendido lo que es una proposición? c) Estudia

Más detalles

ENUNCIADO ABIERTO: Es un enunciado en forma de expresión matemática que no es verdadero ni falso. Ejemplos: x < 9 x + 2 = 10 a + b = 1 a 2 + b 2 = c 2

ENUNCIADO ABIERTO: Es un enunciado en forma de expresión matemática que no es verdadero ni falso. Ejemplos: x < 9 x + 2 = 10 a + b = 1 a 2 + b 2 = c 2 LÓGICA Es la ciencia que estudia el razonamiento inductivo y deductivo. El razonamiento inductivo es aquel que permite llegar a conclusiones generales a partir de observaciones particulares, por el contrario,

Más detalles

Lógica Digital Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas

Lógica Digital Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 1 Lógica Digital 2013 Transversal de Programación Básica Proyecto Curricular de Ingeniería de Sistemas 2 La lógica es una disciplina que estudia la estructura, el fundamento y el uso de las expresiones

Más detalles

Benemérita Universidad Autónoma de Puebla

Benemérita Universidad Autónoma de Puebla Tarea No. 1 Matemáticas Elementales Profesor Fco. Javier Robles Mendoza Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Computación Lógica y Conjuntos 1. Considere las proposiciones

Más detalles

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA Elaborado por: Lic. Bismar Choque Nina MISCELÁNEAS DE PROBLEMAS 2013 ÁLGEBRA I A pesar de que la refutación por ejemplo del contrario es un procedimiento válido, los teoremas

Más detalles

Ejercicios de Lógica Proposicional *

Ejercicios de Lógica Proposicional * Ejercicios de Lógica Proposicional * FernandoRVelazquezQ@gmail.com Notación. El lenguaje proposicional que hemos definido, aquel que utiliza los cinco conectivos,,, y, se denota como L {,,,, }. Los términos

Más detalles

MATEMÁTICA. Módulo Educativo Etapa Presencial Docente Coordinadora: Bioq. y Farm. Marta Marzi

MATEMÁTICA. Módulo Educativo Etapa Presencial Docente Coordinadora: Bioq. y Farm. Marta Marzi MATEMÁTICA Módulo Educativo Etapa Presencial 2014 Docente Coordinadora: Bioq. y Farm. Marta Marzi Facultad de Ciencias Bioquímicas y Farmacéuticas UNIVERSIDAD NACIONAL DE ROSARIO Suipacha 531 0341-4804592/93/97

Más detalles

CORPORACION UNIFICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO

CORPORACION UNIFICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO CORPORACION UNIICACADA NACIONAL DE EDUCACION SUPERIOR CUN- DEPARTAMENTO DE CIENCIAS BÁSICAS: PENSAMIENTO LOGICO-MATEMATICO Proposiciones Lógicas DOC. YAMILE MEDINA CASTAÑEDA GUIA N 2: LOGICA Una proposición

Más detalles

LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS

LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS LÓGICA DE PROPOSICIONAL Y PREDICADOS INGENIERÍA DE SISTEMAS Patricia Zamora Villalobos John Alexander Coral Llanos Josué Maleaño Trejos Prof. Francisco Carrera Fecha de entrega: miércoles de setiembre

Más detalles

Lógica de Proposiciones y de Predicado

Lógica de Proposiciones y de Predicado Lógica de Proposiciones y de Predicado Franco D. Menendez LABIA FACET - UNT Contenido de la Materia UNIDAD TEMÁTICA 1: SINTAXIS Y SEMANTICA DEL LENGUAJE FORMAL»SINTAXIS: Introducción. Definición del lenguaje

Más detalles

CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN GUÍA DE FUNDAMENTOS DE MATEMÁTICAS DOCENTE : YAMILE MEDINA CASTAÑEDA

CORPORACIÓN UNIFICADA NACIONAL DE EDUCACIÓN SUPERIOR CUN GUÍA DE FUNDAMENTOS DE MATEMÁTICAS DOCENTE : YAMILE MEDINA CASTAÑEDA GUÍA # 2 LÓGICA DOCENTE : YAMILE MEDINA CASTAÑEDA PROPOSICIONES Y OPERACIONES LÓGICAS. Una proposición o enunciado es una oración (expresión con sentido completo) de la cual puede afirmarse si es falsa

Más detalles

LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3

LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3 LÓGICA FORMAL. PROPOSICIONES. CONECTORES LÓGICOS. TABLAS DE VERDAD. Introducción a la programación EPET N 3 LÓGICA Los seres humanos constantemente realizamos deducciones. Esto quiere decir que obtenemos

Más detalles

TEMA II. 1.1 Negación La negación es la inversa de los valores de verdad de una declaración como se muestra en la figura: Negación

TEMA II. 1.1 Negación La negación es la inversa de los valores de verdad de una declaración como se muestra en la figura: Negación TEMA II 1. APLICACIONES PRACTICAS DE LOGICA SIMBOLICA Y ÁLGEBRA DE PROPOSICIONES La proposición lógica hace más fácil y efectiva la manipulación de valores de verdad entre proposiciones. Las tablas de

Más detalles

Definición y representación de los

Definición y representación de los Definición y representación de los circuitos lógicos. LÁMARA R + - + - OBJETIVO GENERAL BATERÍA Utilizar el álgebra booleana para analizar y describir el funcionamiento de las combinaciones de las compuertas

Más detalles

Lógica Proposicional. Guía Lógica Proposicional. Tema I: Proposiciones

Lógica Proposicional. Guía Lógica Proposicional. Tema I: Proposiciones Guía Lógica Proposicional Tema I: Proposiciones El hombre ha hecho uso del lenguaje para comunicarse entre sí; usa conjuntos de palabras del idioma que organizadas coherentemente en un contexto determinado

Más detalles

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN

INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4

Más detalles

Matemáticas Dicretas LÓGICA MATEMÁTICA

Matemáticas Dicretas LÓGICA MATEMÁTICA Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.

Más detalles

Lógica Matemática. Tema: Valor de certeza funcional de la preposición: negación, conjunción, disyunción, condicional y bicondicional

Lógica Matemática. Tema: Valor de certeza funcional de la preposición: negación, conjunción, disyunción, condicional y bicondicional Lógica Matemática Tema: Valor de certeza funcional de la preposición: negación, conjunción, disyunción, condicional y bicondicional Valor de certeza funcional de la preposición: negación, conjunción, disyunción,

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 5 Nombre: Tablas de verdad Objetivo Al término de la sesión el participante aplicará los conceptos de lógica a través

Más detalles

CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie.

CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. RESUMEN DE MATEMATICAS I PARTE I CONJUNTOS CONJUNTO: Colección o agregado de ideas u objetos de cualquier especie. A= {números pares} B= { banda de rock} ELEMENTO: Son las ideas u objetos cualesquiera

Más detalles

IDENTIFICANDO ZONAS EN LOS DIAGRAMAS DE VENN UTILIZANDO CONECTIVOS Y CUANTIFICADORES

IDENTIFICANDO ZONAS EN LOS DIAGRAMAS DE VENN UTILIZANDO CONECTIVOS Y CUANTIFICADORES IDENTIFICANDO ZONAS EN LOS DIAGRAMAS DE VENN UTILIZANDO CONECTIVOS Y CUANTIFICADORES Recuerda: CUANTIFICADORES LÓGICOS : generalmente son palabras que se anteponen a una proposición para indicar la cantidad

Más detalles

Taller de Análisis Lógico de Argumentos Filosóficos Semestre FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS. I. Lenguaje formal.

Taller de Análisis Lógico de Argumentos Filosóficos Semestre FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS. I. Lenguaje formal. FORMALIZACIÓN: CONECTIVAS Y CONSTÁNTES LÓGICAS I. Lenguaje formal. 1 II. Definición y utilidad de la formalización Formalización es el proceso de traducción de los argumentos del lenguaje natural a esquemas

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: ASIGNATURA: MATEMATICAS. NOTA INSTITUCION EDUCATIA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS. NOTA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO ECHA N DURACION 1 6 EBRERO

Más detalles

Forma lógica de enunciados

Forma lógica de enunciados Forma lógica de enunciados Marisol Miguel Cárdenas Lenguaje natural y lenguaje formal El lenguaje natural es aquel que utilizamos cotidianamente. Surge históricamente dentro de la sociedad y es aprendido

Más detalles

RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA

RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA ESCUELA DEL MINISTERIO PÚBLICO Dr. Gonzalo Ortiz de Zevallos Roedel RAZONAMIENTO LÓGICO PARA LA ARGUMENTACIÓN JURÍDICA Dr. Luis Alberto Pacheco Mandujano Gerente Central de la Escuela del Ministerio Público

Más detalles

Razonamiento Automático. Representación en Lógica de Predicados. Aplicaciones. Lógica de Predicados. Sintáxis y Semántica

Razonamiento Automático. Representación en Lógica de Predicados. Aplicaciones. Lógica de Predicados. Sintáxis y Semántica Razonamiento Automático II.1 Representación en Lógica de Predicados Razonamiento en IA se refiere a razonamiento deductivo n Nuevos hechos son deducidos lógicamente a partir de otros. Elementos: n Representación

Más detalles

Lógica proposicional o Lógica de enunciados

Lógica proposicional o Lógica de enunciados Tema 3 Lógica proposicional o Lógica de enunciados 1. Qué es la Lógica? 2. El cálculo de proposiciones 2.1. Las conectivas 2.2. Las tablas de verdad 2.3. La deducción natural Bibliografía Deaño, A.: Introducción

Más detalles

Capítulo 1 Lógica Proposicional

Capítulo 1 Lógica Proposicional Capítulo 1 Lógica Proposicional 1.1 Introducción El ser humano, a través de su vida diaria, se comunica con sus semejantes a través de un lenguaje determinado (oral, escrito, etc.) por medio de frases

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.

Más detalles

p q p q p (p q) V V V V V F F F F V V F F F V F

p q p q p (p q) V V V V V F F F F V V F F F V F 3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,

Más detalles

2. Los símbolos de la lógica proposicional.

2. Los símbolos de la lógica proposicional. Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera

Más detalles

Guía para el estudiante

Guía para el estudiante Guía realizada por Jefferson Bustos Ortiz Máster en Educación Matemática jeferortiz@gmail.com jbustos@colegioscompartir.org Nombre: Curso: Dentro del lenguaje común, las palabras y frases pueden tener

Más detalles

NOTACIÓN MATEMÁTICA INTRODUCCION:

NOTACIÓN MATEMÁTICA INTRODUCCION: INTRODUCCION: NOTACIÓN MATEMÁTICA La matemática tiene, como la mayoría de las ciencias y otras disciplinas del saber, un lenguaje particular, específico, el cual simplifica, en algunos casos, la comunicación,

Más detalles

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave

Más detalles

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza

Proposicional. Curso Mari Carmen Suárez de Figueroa Baonza Semántica Proposicional Curso 2014 2015 Mari Carmen Suárez de Figueroa Baonza mcsuarez@fi.upm.es Contenidos Introducción Interpretación de FBFs proposicionales Validez Satisfacibilidad Validez y Satisfacibilidad

Más detalles

Universidad Abierta y a Distancia de México. Licenciatura en matemáticas. 2 cuatrimestre. Introducción al pensamiento matemático

Universidad Abierta y a Distancia de México. Licenciatura en matemáticas. 2 cuatrimestre. Introducción al pensamiento matemático Universidad Abierta y a Distancia de México Licenciatura en matemáticas 2 cuatrimestre Introducción al pensamiento matemático Clave: 1 Índice... 3 Ficha de identificación... 3 Descripción... 3 Propósitos...

Más detalles

Evaluación Nacional Revisión del intento 1

Evaluación Nacional Revisión del intento 1 LOGICA MATEMATICA Perfil Salir Evaluación Nacional Revisión del intento 1 Finalizar revisión Comenzado el sábado, 15 de junio de 2013, 15:59 Completado el sábado, 15 de junio de 2013, 16:35 Tiempo empleado

Más detalles

CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES

CURSO NIVELACIÓN LÓGICA MATEMÁTICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA LAS PROPOSICIONES LAS PROPOSICIONES Objetivo Brindar al estudiante un concepto claro en la formulación, interpretación y aplicabilidad de las proposiciones. La interpretación de las proposiciones compuestas permite al estudiante

Más detalles

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores

Lógica Proposicional. Guía Lógica Proposicional. Tema III: Cuantificadores Guía Lógica Proposicional Tema III: Cuantificadores 1.7.2. CUANTIFICADORES Los cuantificadores permiten afirmaciones sobre colecciones enteras de objetos en lugar de tener que enumerar los objetos por

Más detalles

Lógica de predicados

Lógica de predicados Lógica de predicados Cálculo de predicados Hay ciertos argumentos que parecen ser perfectamente lógicos y que no pueden ser especificados usando cálculo proposicional. Ejemplos: Todos los gatos tienen

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

Cálculo de predicados. Lógica de predicados. Cálculo de predicados. Cálculo de predicados 08/06/2011

Cálculo de predicados. Lógica de predicados. Cálculo de predicados. Cálculo de predicados 08/06/2011 Lógica de predicados Hay ciertos argumentos que parecen ser perfectamente lógicos y que no pueden ser especificados usando cálculo proposicional. Ejemplos: Todos los gatos tienen cola Tomás es un gato

Más detalles

Curso LÓGICA Examen de recuperación de lógica proposicional

Curso LÓGICA Examen de recuperación de lógica proposicional Curso 2013-2014 LÓGICA Examen de recuperación de lógica proposicional 13-01-2014 1.1. Formalizar en el lenguaje de la lógica proposicional el siguiente razonamiento: (2,5 puntos) Es necesario que estudie

Más detalles

PRIMERA UNIDAD II SEMESTRE FILOSOFIA

PRIMERA UNIDAD II SEMESTRE FILOSOFIA PRIMERA UNIDAD II SEMESTRE ILOSOIA Lógica Matemática y Lógica de predicados. Objetivo: Comprender la función de la lógica matemática en la reflexión y el análisis de la realidad. Objetivo especifico :

Más detalles

DEPARTAMENTO DE MATEMÁTICA Y FÍSICA ASIGNATURA

DEPARTAMENTO DE MATEMÁTICA Y FÍSICA ASIGNATURA UNIVERSIDAD NACIONAL DEL TACHIRA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA ASIGNATURA : Matemáticas Discreta PROPOSICIONES DEFINICIÓN: DEFINICIÓN DE PROPOSICIÓN: Una proposición es un juicio declarativo del

Más detalles

Lógica Proposicional

Lógica Proposicional Lógica Proposicional La lógica se define como la ciencia del razonamiento, o como el estudio de los métodos y principios usados para distinguir el razonamiento correcto del incorrecto. La lógica, está

Más detalles

Lógica proposicional. Ivan Olmos Pineda

Lógica proposicional. Ivan Olmos Pineda Lógica proposicional Ivan Olmos Pineda Introducción Originalmente, la lógica trataba con argumentos en el lenguaje natural es el siguiente argumento válido? Todos los hombres son mortales Sócrates es hombre

Más detalles

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO

ANOTACIONES BÁSICAS SOBRE LÓGICA PROPOSICIONAL FILOSOFÍA 1º BACHILLERATO Pág. 1 Lógica Proposicional La lógica proposicional es la más antigua y simple de las formas de lógica. Utilizando una representación primitiva del lenguaje, permite representar y manipular aserciones

Más detalles

Apuntes de Lógica Proposicional

Apuntes de Lógica Proposicional Apuntes de Lógica Proposicional La lógica proposicional trabaja con expresiones u oraciones a las cuales se les puede asociar un valor de verdad (verdadero o falso); estas sentencias se conocen como sentencias

Más detalles

Lógica de proposiciones (5)

Lógica de proposiciones (5) Lógica de proposiciones (5) Fundamentos de Informática I I..I. Sistemas (2005-06) César Llamas Bello Universidad de Valladolid 1 Lógica Índice Lógica proposicional ecuacional Lógica: semántica Semántica

Más detalles

Lógica y Programación

Lógica y Programación Lógica y Programación Diagramas de Decisión Binarios J.-A. Alonso, F.-J. Martín-Mateos, J.-L. Ruiz-Reina Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Programación

Más detalles

El lenguaje formal de la Lógica Qué es un lenguaje formal? Un lenguaje formal, en tanto que lenguaje artificial, está formado por los siguientes elementos básicos: Unos signos primitivos del lenguaje,

Más detalles

logica computacional Tema 1: Introducción al Cálculo de Proposiciones

logica computacional Tema 1: Introducción al Cálculo de Proposiciones Tema 1: Introducción al Cálculo de Proposiciones Introducción al concepto de cálculo Un cálculo es una estructura pura; un sistema de relaciones. Un cálculo se compone de lo siguiente: Un conjunto de elementos

Más detalles

ALUMNO SEGUIMIENTO TALLER

ALUMNO SEGUIMIENTO TALLER AREA Matemáticas PERIODO I GRADO 6 TEMA E,A,B DOCENTE Diana Patricia Valencia Valencia ALUMNO SEGUIMIENTO TALLER NOTA 1 NOTA 2 NOTA 3 NOTA 4 Nota: Los talleres son iguales para los niveles (A, B, E) ya

Más detalles

Lógica Matemática, Sistemas Formales, Cláusulas de Horn

Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lógica Matemática, Sistemas Formales, Cláusulas de Horn Lic. José Manuel Alvarado La lógica se ocupa de las argumentaciones válidas. Las argumentaciones ocurren cuando se quiere justificar una proposición

Más detalles

Proposiciones En nuestro lenguaje usualmente se hace uso de cuatro tipos de proposiciones, a saber:

Proposiciones En nuestro lenguaje usualmente se hace uso de cuatro tipos de proposiciones, a saber: GRUPO TEMATICO: Proposiciones lógicas. Valor de verdad de una proposición. Introducción a la teoría de conjuntos. Operaciones con conjuntos. Números enteros y su representación. Proposiciones lógicas Proposiciones

Más detalles

Introducción a la lógica matemática

Introducción a la lógica matemática Introducción a la lógica matemática por Iván Cruz Aceves Existen diferentes situaciones en las que es indispensable reconocer cuando una situación o argumento, es o no válido, y es en estas situaciones

Más detalles

SESIÓN 2 COMPUTACIÓN Y MATEMÁTICAS.

SESIÓN 2 COMPUTACIÓN Y MATEMÁTICAS. SESIÓN 2 COMPUTCIÓN Y MTEMÁTICS. I. CONTENIDOS: 1. Lógica proposicional. 2. Las tablas de verdad. 3. Los sistemas numéricos y el álgebra booleana. 4. Compuertas lógicas digitales. 5. Circuitos integrados.

Más detalles

ÁLGEBRA DE BOOLE Y FUNCIONES LÓGICAS

ÁLGEBRA DE BOOLE Y FUNCIONES LÓGICAS 1. Introducción ÁLGERA DE OOLE Y FUNCIONES LÓGICAS El Álgebra de oole es una parte de la matemática, la lógica y la electrónica que estudia las variables, operaciones y expresiones lógicas. Debe su nombre

Más detalles

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /

LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente

Más detalles

Lógica Proposicional. Significado de una Fórmula Proposicional

Lógica Proposicional. Significado de una Fórmula Proposicional Proposicional Semántica Semántica Proposicional - Significado de una Fórmula Proposicional El significado de una proposición está dado por su valor de verdad (o sea, si es Verdadera o Falsa) que se obtiene

Más detalles

Tema 2: Teoría de la Demostración

Tema 2: Teoría de la Demostración Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración

Más detalles
SitemapFuturama Season 5 | Le Testament Caché (2016) | Mera Ghar Aur Ghardari