Probabilidad y Estadística


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Probabilidad y Estadística"

Transcripción

1 Probabilidad y Estadística Tema 13 Inferencia en una población Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar el procedimiento de pruebas en la inferencia estadística. Aplicar la inferencia estadística para la media una población. Aplicar la inferencia estadística para una proporción.

2 Introducción al tema Consideremos por un momento que Pepsi Cola lanza una campaña en el país cuando se sabe que su participación de mercado es, por mencionar un número, de un 15%. Durante algún tiempo se realizan todos los eventos pensados en su campaña y al final de la misma realiza una encuesta en varias partes de la república y obtiene que ahora su participación de mercado ha subido un par de puntos porcentuales para situarse en 17%. Introducción al tema Cómo sabe Pepsi Cola si su campaña realmente ha cambiado las preferencias del consumidor hacia sus productos a partir de una muestra de la población?, cómo comprobar que la nueva participación de mercado es real y no un simple error al tomar una muestra de la población? Te invito a que juntos exploremos las técnicas que nos permiten, si no a tener una certeza clara de lo que ocurre en la población a partir de los resultados de una muestra, si una idea de que las tendencias de una población en estudio han cambiado o bien, se conservan.

3 Qué es una hipótesis? Es un enunciado acerca del valor de un parámetro poblacional. La razón para establecer una hipótesis es que la población de interés es tan grande que por diversas razones sería prácticamente imposible estudiar a todos los elementos de la población. Algunos ejemplo de hipótesis El ingreso mensual medio para los ciudadanos jubilados es de $9,930 pesos. Se sabe que el 20% de los delincuentes juveniles finalmente son arrestados, se les sentencia y encarcela. El diámetro exterior medio de los cojines de bolas producidos durante una jornada laboral es de pulgadas. En general, el 90% de las formas de impuesto federal de ingresos se llenan correctamente. Las resistencias al impacto de los parabrisas que producen dos empresas industriales son iguales.

4 Prueba de hipótesis Es un procedimiento basado en la evidencia muestral y en la teoría de probabilidad que se emplea para determinar si la hipótesis en un enunciado razonable y no debe rechazarse, o si es irrazonable y debe ser rechazada. Procedimiento de pruebas Paso 1: Plantear las hipótesis nula y alternativa. Paso 2: Seleccionar el nivel de significación. Paso 3: Identificar el estadístico de prueba. Paso 5: Tomar una muestra y llegar a la decisión. Paso 4: Formular la regla de decisión.

5 Procedimiento de pruebas La hipótesis nula es una afirmación o enunciado tentativo que se realiza acerca del valor de un parámetro poblacional. La hipótesis alternativa es una afirmación o enunciado que se aceptará si hay evidencia de que la hipótesis nula es falsa. El nivel de significación es el riesgo que se asume acerca de rechazar la hipótesis nula cuando en realidad debe aceptarse por ser verdadera. Error Tipo I: La probabilidad de rechazar la hipótesis nula cuando en realidad es verdadera. Error Tipo II: La probabilidad de aceptar la hipótesis nula cuando en realidad es falsa. Un estadístico de prueba es un valor determinado a partir de la información muestral, que se utiliza para aceptar o rechazar la hipótesis nula. Pruebas de significación de una y dos colas El signo < apunta a la región de rechazo en la cola inferior de la curva normal. rechazo aceptación Valor crítico

6 Pruebas de significación de una y dos colas El signo > apunta a la región de rechazo en la cola superior de la curva normal. aceptación rechazo Valor crítico Pruebas de significación de una y dos colas Si en la hipótesis alternativa no se especifica una dirección, se aplica una prueba de dos colas o extremidades. rechazo aceptación rechazo Valor crítico Valor crítico

7 Se utiliza el estadístico z cuando el tamaño de la muestra es grande (mayores a 30). Donde: = Media muestral = Media poblacional = Desviación estándar poblacional n = Tamaño de la muestra Se sabe que la distribución de las tasas de eficiencia para los trabajadores de una compañía se distribuye normalmente con una media poblacional de 200 y una desviación estándar poblacional de 16. El departamento de investigación cuestiona esta media, afirmando que es diferente de 200. Usar el nivel de significación del 1% y probar la hipótesis de que la media poblacional es de 200. Paso 1: Plantear la hipótesis nula y alternativa. H0: La media poblacional es de 200 H1: La media poblacional no es 200

8 Paso 2: Seleccionar el nivel de significación. Se utilizará el nivel del 5% Paso 3: Identificar el estadístico de prueba. El estadístico adecuado es z, pues se está analizando la hipótesis sobre una media poblacional cuando el tamaño de la muestra es grande (mayores a 30). La transformación de los datos a unidades estándares (valores z) permite que se usen en un gran número de problemas diferentes. Paso 4: Formular la región de decisión. Puesto que es una prueba de dos colas, se busca la porción de cada cola que determina la mitad del nivel de significación, en este caso la mitad de 0.01 es z Dado que el valor está entre 2.57 y 2.58, se utiliza un valor de Z de

9 Paso 5: Tomar la muestra y llegar a una decisión. Se analizaron las calificaciones de eficiencia de 100 empleados de producción y se calculó que la media de la muestra es de Calculamos el estadístico z para evaluar la hipótesis nula: Dado que 2.19 queda en la región de aceptación, la hipótesis nula que indica que la media poblacional no es diferente de 200, se acepta con un nivel del 0.01 o 1%. La diferencia entre y 200 puede atribuirse a una variación aleatoria.

10 Si se desconoce la desviación estándar poblacional, podemos utilizar la desviación estándar de la muestra: Donde: = Media muestral = Media poblacional s = Desviación estándar muestral n = Tamaño de la muestra Se utiliza el estadístico t cuando el tamaño de la muestra es pequeña (menores a 30). Donde: = Media muestral = Media poblacional = Desviación estándar poblacional n = Tamaño de la muestra

11 La distribución t-student tiene la siguientes características: Como la distribución normal, es una distribución continua. Como la distribución normal, tiene forma de campana y simétrica. No hay una distribución t, sino una familia de distribuciones t. Todas tiene la misma media igual a cero, pero sus desviaciones estándar difieren de acuerdo al tamaño de la muestra n. Es más extendida y menos aguda en el centro que la distribución normal. Prueba de hipótesis sobre una proporción Se utiliza el estadístico z con la siguiente fórmula. Donde: = Proporción muestral p = Proporción poblacional n = Tamaño de la muestra

12 Cierre Las pruebas de hipótesis nos permiten, a partir de las muestras de una población y de los estadísticos poblacionales con los que se cuenta, como por ejemplo la media poblacional, investigar un poco más a fondo el comportamiento real de la población en estudio a partir de una nueva evaluación, como por ejemplo de la media de una muestra. Conocimos la teoría acerca de las pruebas de hipótesis y utilizamos el método de cinco pasos para llevar a cabo una prueba de hipótesis. Aprendimos a reconocer si la prueba de hipótesis es de una cola, izquierda o derecha, o de dos colas y determinar el signo < ó > para la hipótesis nula. Cierre Durante el desarrollo de este tema, utilizamos dos estadísticos de prueba: el de la normal estándar para poblaciones grandes, es decir, donde la muestra es mayor a 30 elementos, y también lo utilizamos para realizar pruebas de hipótesis para proporciones. También conocimos y utilizamos en estadístico t, que diluye un poco el error ocasionado por obtener datos muestrales a partir de muestras pequeñas, menores a 30 elementos. Cómo sabemos que dos poblaciones normales o dos proporciones tomadas de distintos grupos muestrales, pertenecen a la misma población? En el próximo tema realizaremos tales comparaciones.

13 Referencias bibliográficas Devore, J. (2008). Probabilidad y estadística para ingeniería y ciencias. (7a. Ed.). México: Cengage Learning. Capítulo: 7 Wakerly, D., Mendenhall, W. et al. (2002). Estadística matemática con aplicaciones. (6a. Ed). México: Cengage Learning. Spiegel, M. (2004). Probabilidad y estadística (2a. Ed). México: McGraw Hill. Créditos Diseño de contenido: Ing. Armando Calzada Mezura, MA, PMP Coordinador académico: Lic. José de Jesús Romero Álvarez, MC y MED. Edición de contenido: Lic. Verónica Montes de Oca Pinzón. Edición de texto: Lic. Arcelia Ramos Monobe, MEE Diseño Gráfico: Lic. Alejandro Calderas González, MATI

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 2 Probabilidad condicional e independencia Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los eventos condicionales de los eventos independientes.

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 8 Distribución normal estándar y distribuciones relacionadas Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Explicar los conceptos de la distribución

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 3 Modelo de programación lineal: conceptos básicos 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Comprender el concepto de modelos de programación lineal. Identificar la

Más detalles

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua

para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Pruebas de hipótesis para una muestra Ref: Apuntes de Estadística, Mtra Leticia de la Torre Instituto Tecnológico de Chiuhuahua Las secciones anteriores han mostrado cómo puede estimarse un parámetro de

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I

Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema

Análisis de Decisiones II. Tema 17 Generación de números al azar. Objetivo de aprendizaje del tema Tema 17 Generación de números al azar Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Obtener números aleatorios a partir de un proceso de generación. Validar las características

Más detalles

Germán Jesús Rubio Luna Catedrático de Matemáticas del IES Francisco Ayala

Germán Jesús Rubio Luna Catedrático de Matemáticas del IES Francisco Ayala Decisión estadística. Contraste de hipótesis Nota.- Cuando tratábamos la estimación de parámetros, intentábamos obtener un valor o un intervalo de valores que constituyesen la mejor estimación del parámetro

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS Seminario de Investigación Área a la que pertenece: AREA DE FORMACIÓN INTEGRAL PROFESIONAL Horas teóricas: 3 Horas practicas: 0 Créditos: 6 Clave: F0241 Ninguna. Asignaturas antecedentes

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.

LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL. LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Estadística Inferencial. Sesión 5. Prueba de hipótesis

Estadística Inferencial. Sesión 5. Prueba de hipótesis Estadística Inferencial. Sesión 5. Prueba de hipótesis Contextualización. En la práctica, es frecuente tener que tomar decisiones acerca de poblaciones con base en información de muestreo. Tales decisiones

Más detalles

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza

Otra característica poblacional de interés es la varianza de la población, 2, y su raíz cuadrada, la desviación estándar de la población,. La varianza CARACTERÍSTICAS DE LA POBLACIÓN. Una pregunta práctica en gran parte de la investigación de mercado tiene que ver con el tamaño de la muestra. La encuesta, en principio, no puede ser aplicada sin conocer

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 12. Contraste de hipótesis. Introducción. Introducción Curso de Estadística Aplicada a las Ciencias Sociales Tema 12. Contraste de (Cap. 22 del libro) Tema 12. Contraste de 1. Tipos de 2. La nula y la Ejercicios Tema 12, Contraste de 2 En muchas investigaciones

Más detalles

Estadística para la toma de decisiones

Estadística para la toma de decisiones Estadística para la toma de decisiones ESTADÍSTICA PARA LA TOMA DE DECISIONES. 1 Sesión No. 7 Nombre: Distribuciones de probabilidad para variables continúas. Objetivo Al término de la sesión el estudiante

Más detalles

ANALISIS E INTERPRETACION DE DATOS SOBRE PERMANENCIA Y GASTOS DE LOS ALUMNOS EN LA UNIVERSIDAD NACIONAL DE INGENIERIA

ANALISIS E INTERPRETACION DE DATOS SOBRE PERMANENCIA Y GASTOS DE LOS ALUMNOS EN LA UNIVERSIDAD NACIONAL DE INGENIERIA ANALISIS E INTERPRETACION DE DATOS SOBRE PERMANENCIA Y GASTOS DE LOS ALUMNOS EN LA UNIVERSIDAD NACIONAL DE INGENIERIA Jack Marlon Martínez Abregu e-mail: marlon_jack@hotmail.com IvánJosé Pazos Alvarado

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

2. Análisis de varianza

2. Análisis de varianza 1. Análisis de varianza Introducción La estadística inferencial no solo realiza estudios con una muestra, también es necesario trabajar con más de una muestra; las que pueden ser dos o más. Para cada una

Más detalles

Tema 5: Introducción a la inferencia estadística

Tema 5: Introducción a la inferencia estadística Tema 5: Introducción a la inferencia estadística 1. Planteamiento y objetivos 2. Estadísticos y distribución muestral 3. Estimadores puntuales 4. Estimadores por intervalos 5. Contrastes de hipótesis Lecturas

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

GUÍA DOCENTE DE ESTADÍSTICA EMPRESARIAL I

GUÍA DOCENTE DE ESTADÍSTICA EMPRESARIAL I GUÍA DOCENTE DE ESTADÍSTICA EMPRESARIAL I 1 TITULACIÓN: GRADO ADE GUÍA DE DOCENTE DE LA ASIGNATURA: Estadística Empresarial I Coordinador: Isabel García I.- Identificación de la asignatura: Tipo Materia

Más detalles

CAPÍTULO I. INTRODUCCIÓN. Cuando se requiere obtener información de una población, y se desean obtener los mejores

CAPÍTULO I. INTRODUCCIÓN. Cuando se requiere obtener información de una población, y se desean obtener los mejores CAPÍTULO I. INTRODUCCIÓN I.1 Breve Descripción Cuando se requiere obtener información de una población, y se desean obtener los mejores y más completos resultados, el censo es una opción para dar una respuesta

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA ESCUELA DE POSTGRADO MAESTRÍA EN CIENCIAS DE LA EDUCACIÓN MENCIÓN GESTION DE CENTROS EDUCATIVOS

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA ESCUELA DE POSTGRADO MAESTRÍA EN CIENCIAS DE LA EDUCACIÓN MENCIÓN GESTION DE CENTROS EDUCATIVOS UNIVERSIDAD ABIERTA PARA ADULTOS UAPA ESCUELA DE POSTGRADO MAESTRÍA EN CIENCIAS DE LA EDUCACIÓN MENCIÓN GESTION DE CENTROS EDUCATIVOS PROGRAMA DE LA ASIGNATURA METODOLOGÍA DE LA INVESTIGACIÓN EDUCATIVA

Más detalles

Fundamentos de Economía

Fundamentos de Economía Fundamentos de Economía 1 Sesión No.9 Nombre: Conceptos fundamentales de la microeconomía. Primera parte. Objetivo: El alumno podrá identificar y comprender los principales conceptos y objetos de estudio

Más detalles

Objetivos. Epígrafes 3-1. Francisco José García Álvarez

Objetivos. Epígrafes 3-1. Francisco José García Álvarez Objetivos Entender el concepto de variabilidad natural de un procesos Comprender la necesidad de los gráficos de control Aprender a diferenciar los tipos de gráficos de control y conocer sus limitaciones.

Más detalles

6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE

6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE 6. Estimación, DISTRIBUCIONES MUESTREO, Y PRUEBA DE HIPÓTESIS. 6.1 INFERENCIA ESTADISTICA La estadística está dividida en descriptiva e inferencial donde La estadística Descriptiva se relaciona principalmente

Más detalles

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza.

Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Estadística Inferencial. Sesión No. 8 Pruebas de hipótesis para varianza. Contextualización. En las dos sesiones anteriores se vieron métodos de inferencia estadística para medias y proporciones poblacionales.

Más detalles

CAPITULO V METODOLOGÍA DE LA INVESTIGACIÓN

CAPITULO V METODOLOGÍA DE LA INVESTIGACIÓN CAPITULO V METODOLOGÍA DE LA INVESTIGACIÓN Población y Muestra: El tipo de investigación es un estudio correlacional que consiste en ver la relación entre la variable independiente y dependiente. La población

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

c). Conceptos. Son los grupos o conceptos que se enlistan en las filas de la izquierda de la tabla

c). Conceptos. Son los grupos o conceptos que se enlistan en las filas de la izquierda de la tabla Tema 5. Tablas estadísticas Como ya se había establecido en el tema anterior sobre el uso de las tablas estadísticas, éstas son medios que utiliza la estadística descriptiva o deductiva para la presentación

Más detalles

Creación de empresas de alto valor agregado

Creación de empresas de alto valor agregado Creación de empresas de alto valor agregado Tema 1 Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Identificar la existencia de una necesidad. Distinguir si la idea de negocio constituye

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares.

Matemáticas III. Matemáticas III. Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. Matemáticas III Tema 6 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Calcular área, perímetro y los demás elementos de polígonos tanto regulares como irregulares. 2 1 Introducción

Más detalles

La Investigación Científica Aplicada al Deporte

La Investigación Científica Aplicada al Deporte C U B A Facultad de Cultura Física de Matanzas Conferencia Magistral La Investigación Científica Aplicada al Deporte Autora: Dra. C. María Elena Guardo García. Universidad Autónoma de Nuevo León 2006 M.E.GUARDO

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Ing. Eduardo Cruz Romero w w w. tics-tlapa. c o m

Ing. Eduardo Cruz Romero w w w. tics-tlapa. c o m Ing. Eduardo Cruz Romero eduar14_cr@hotmail.com w w w. tics-tlapa. c o m La estadística es tan vieja como la historia registrada. En la antigüedad los egipcios hacían censos de las personas y de los bienes

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

Introducción a una prueba de Hipótesis para una proporción

Introducción a una prueba de Hipótesis para una proporción Introducción a una prueba de Hipótesis para una proporción XVII Semana Regional de Investigación y Docencia en Matemáticas M.C. Paulina Danae López Ceballos Herramientas Una bolsita de chocolates m&m cafés.

Más detalles

TRATAMIENTO DE PUNTAJES

TRATAMIENTO DE PUNTAJES TRATAMIENTO DE PUNTAJES Andrés Antivilo B. Paola Contreras O. Jorge Hernández M. UNIDAD DE ESTUDIOS E INVESTIGACIÓN Santiago, 2015 [Escriba texto] TABLA DE CONTENIDO TRATAMIENTO DE LOS PUNTAJES... 4 1.1.

Más detalles

SECUENCIA DIDÁCTICA. Módulo IV

SECUENCIA DIDÁCTICA. Módulo IV SECUENCIA DIDÁCTICA Nombre de curso: Simulación de Sistemas Antecedente: Clave de curso: ECOM118 Clave de antecedente: Ninguna. Módulo IV Competencia de Módulo: Desarrollar programas de cómputo utilizando

Más detalles

Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial.

Carrera: INB Participantes. Representante de las academias de ingeniería industrial de. Academias Ingeniería Industrial. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Investigación de Operaciones II Ingeniería Industrial INB-0412 4-0-8 2.- HISTORIA

Más detalles

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica

CAPITULO 6. Análisis Dimensional y Semejanza Dinámica CAPITULO 6. Análisis Dimensional y Semejanza Dinámica Debido a que son pocos los flujos reales que pueden ser resueltos con exactitud sólo mediante métodos analíticos, el desarrollo de la mecánica de fluidos

Más detalles

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad

BLOQUE I: GEOMETRÍA PLANA Y FIGURAS GEOMÉTRICAS. Ecuaciones y sistemas. 2 (20 horas) Funciones y gráficas. 2 (20 horas) Estadística y probabilidad PROGRAMACIÓN DIDÁCTICA Materia IV Período FBPI Tramo II Ámbito Científico-Tecnológico Bloque I Geometría plana y figuras geométricas Créditos 3 (30 horas) Bloque II Créditos Ecuaciones y sistemas 2 (20

Más detalles

de Operaciones Área Académica: Sistemas Computacionales Tema: Tipos de Modelos en Investigación Profesor: I.S.C. Guadalupe Hernández Coca

de Operaciones Área Académica: Sistemas Computacionales Tema: Tipos de Modelos en Investigación Profesor: I.S.C. Guadalupe Hernández Coca Área Académica: Sistemas Computacionales Tema: Tipos de Modelos en Investigación de Operaciones Profesor: I.S.C. Guadalupe Hernández Coca Periodo: Julio Diciembre 2011 Keywords: investigation of operations,

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Química Propedéutico para Bachillerato OBJETIVO

Química Propedéutico para Bachillerato OBJETIVO Actividad 14. CÁLCULO DEL PESO MOLECULAR OBJETIVO Calcular los pesos moleculares de los compuestos químicos D.R. Universidad TecMilenio 1 INTRODUCCIÓN Las reacciones químicas son representadas mediante

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Reporte de Pobreza por Ingresos JUNIO 2015

Reporte de Pobreza por Ingresos JUNIO 2015 Reporte de Pobreza por Ingresos JUNIO 2015 1 Resumen Ejecutivo En el presente documento se exhiben los resultados obtenidos en el cálculo de pobreza y desigualdad por ingresos a partir de la Encuesta Nacional

Más detalles

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Mercadeo. Programa de Asignatura

UNIVERSIDAD DEL CARIBE UNICARIBE. Escuela de Mercadeo. Programa de Asignatura UNIVERSIDAD DEL CARIBE UNICARIBE Escuela de Mercadeo Programa de Asignatura Nombre de la asignatura : Diseño de Producto Carga académica : 4 Créditos Modalidad : Semipresencial Clave : MEC-312 Pre-requisito

Más detalles

SILABO DEL CURSO SEMINARIO DE TESIS

SILABO DEL CURSO SEMINARIO DE TESIS FACULTAD DE INGENIERÍA CARRERA DE INGENIERÍA DE SISTEMAS SILABO DEL CURSO SEMINARIO DE TESIS 1. DATOS GENERALES 1.1 Facultad : Ingeniería 1.2 Carrera profesional : Ingeniería de Sistemas 1.3 Departamento

Más detalles

CURSO: Métodos estadísticos de uso frecuente en salud

CURSO: Métodos estadísticos de uso frecuente en salud CURSO: Métodos estadísticos de uso frecuente en salud Información General Versión: 2016 Modalidad: Presencial. Duración Total: 40 horas. NUEVA FECHA Fecha de inicio: 01 de octubre Fecha de término: 10

Más detalles

GUÍA DOCENTE DE DIRECCION FINANCIERA I. Curso

GUÍA DOCENTE DE DIRECCION FINANCIERA I. Curso GUÍA DOCENTE DE DIRECCION FINANCIERA I Curso 2013-2014 1 TITULACIÓN: GRADO ADE GUÍA DE DOCENTE DE LA ASIGNATURA:DIRECCION FINANCIERA I Coordinador: César Tapias I.- Identificación de la asignatura: Tipo

Más detalles

Reporte de Pobreza y Desigualdad DICIEMBRE 2015

Reporte de Pobreza y Desigualdad DICIEMBRE 2015 Reporte de Pobreza y Desigualdad DICIEMBRE 2015 1 Reporte de Pobreza y Desigualdad - Diciembre 2015 Dirección responsable de la información estadística y contenidos: Dirección de Innovación en Métricas

Más detalles

LA ECONOMÍA 1- QUÉ ES LA ECONOMÍA? 2- LOS SISTEMAS ECONÓMICOS 3- LOS INDICADORES ECONÓMICOS 4- LOS CICLOS ECONÓMICOS

LA ECONOMÍA 1- QUÉ ES LA ECONOMÍA? 2- LOS SISTEMAS ECONÓMICOS 3- LOS INDICADORES ECONÓMICOS 4- LOS CICLOS ECONÓMICOS LA ECONOMÍA 1- QUÉ ES LA ECONOMÍA? 2- LOS SISTEMAS ECONÓMICOS 3- LOS INDICADORES ECONÓMICOS 4- LOS CICLOS ECONÓMICOS 5- LAS GRANDES CRISIS DEL CAPITALISMO 1- QUÉ ES LA ECONOMÍA? La palabra economía proviene

Más detalles

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ECONOMIA III. - Pre requisitos : Economía II Matemáticas III

PROGRAMA DE ESTUDIO. - Nombre de la asignatura : ECONOMIA III. - Pre requisitos : Economía II Matemáticas III PROGRAMA DE ESTUDIO A. Antecedentes Generales. - Nombre de la asignatura : ECONOMIA III - Código : ENE 314 - Carácter de la asignatura (obligatoria/ electiva) : Obligatoria - Pre requisitos : Economía

Más detalles

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros:

Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: STATGRAPHICS Re. 4/d/yyyy Pruebas de Hipótesis (Una Muestra) Este procedimiento prueba hipótesis acerca de cualquiera de los siguientes parámetros: 1. la media μ de una distribución normal.. la desiación

Más detalles

2. CONTRIBUCIÓN DE LA ASIGNATURA AL PERFIL DE EGRESO

2. CONTRIBUCIÓN DE LA ASIGNATURA AL PERFIL DE EGRESO PROGRAMA DE ESTUDIO Facultad de Ciencias Químicas e Ingeniería Nombre de la asignatura: PROBABILIDAD Y ESTADÍSTICA 2 Clave: 0 $ 7 & L F O R Formativ R: Básic o ( X ) P r o f e s i o n( a l) E s p e c i

Más detalles

EVOLUCIÓN Actualmente la mayoría de los caballos tienen un perfil alargado y pueden correr rápido.

EVOLUCIÓN Actualmente la mayoría de los caballos tienen un perfil alargado y pueden correr rápido. EVOLUCIÓN Actualmente la mayoría de los caballos tienen un perfil alargado y pueden correr rápido. Los científicos han encontrado esqueletos fósiles de animales que son similares a los caballos. Los consideran

Más detalles

PRACTICA PSICOLOGICA IV

PRACTICA PSICOLOGICA IV FACULTAD DE PSICOLOGÍA, U. A. N. L. Programa Académico de la Licenciatura en Psicología PRACTICA PSICOLOGICA IV Elaboró: Revisó: Autorizó: Macias Núñez Nora Isela Lic Méndez Hinojosa Luz Marina Lic. Rosales

Más detalles

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes.

A continuación se presenta la información de la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. M150: Creciendo A) Presentación del problema LOS JOVENES CRECEN MAS ALTO A continuación se presenta la altura promedio para el año de 1998 en Holanda de hombres y mujeres jóvenes. B) Preguntas del problema

Más detalles

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011

NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 NOCIONES DE ESTADÍSTICA CURSO PRÁCTICO DE CLIMATOLOGÍA 2011 CÓMO CARACTERIZAR UNA SERIE DE DATOS? POSICIÓN- dividen un conjunto ordenado de datos en grupos con la misma cantidad de individuos CENTRALIZACIÓN-

Más detalles

El curso es de naturaleza aplicativa y teórico-práctica, y se estructura en cuatro unidades:

El curso es de naturaleza aplicativa y teórico-práctica, y se estructura en cuatro unidades: SILABO DEL CURSO CONTROL ESTADISTICO DE LA CALIDAD 1. DATOS GENERALES 1.1. Facultad : Ciencias e Ingeniería 1.2. Carrera Profesional : Ingeniería Industrial 1.3. Departamento : Ingeniería Industrial 1.4.

Más detalles

ADMINISTRACIÓN FINANCIERA

ADMINISTRACIÓN FINANCIERA ADMINISTRACIÓN FINANCIERA Documento sobre las funciones financieras de la planilla de cálculos Excel que permiten resolver el valor actual de pagos vencidos (VAN y TIR) Función VNA - Cálculo del valor

Más detalles

Operaciones algebraicas elementales (Unidad I del curso Matemáticas Básicas).

Operaciones algebraicas elementales (Unidad I del curso Matemáticas Básicas). I. Identificadores de la asignatura Clave: UMA1007 95 Créditos: 8 Materia: Programación Lineal Departamento: Ciencias Sociales Instituto: Ciencias Sociales y Administración Programa: Licenciatura en Economía

Más detalles

Matemáticas Propedéutico para Bachillerato

Matemáticas Propedéutico para Bachillerato Actividad 2. Operación de Conjuntos. Introducción Como ya te habíamos comentado, con la teoría de conjuntos se pueden resolver problemas aritméticos, que ya empleamos actualmente, pero los resolvemos por

Más detalles

Tema 4 Variables Aleatorias

Tema 4 Variables Aleatorias Tema 4 Variables Aleatorias 1 Introducción En Estadística Descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y posteriormente se vimos los fundamentos de la teoría de probabilidades.

Más detalles

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual:

Prueba de hipótesis. 1. Considerando lo anterior específica: a. La variable de estudio: b. La población: c. El parámetro. d. Estimador puntual: Prueba de hipótesis Problema Un grupo de profesores, de cierto estado de la república, plantea una investigación acerca del aprendizaje de las ciencias naturales en la escuela primaria. Uno de los objetivos

Más detalles

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis

Objetivos del tema. Qué es una hipótesis? Test de Hipótesis Introducción a la Probabilidad y Estadística. Contrastando una hipótesis Objetivos del tema Conocer el proceso para contrastar hipótesis y su relación con el método científico. Diferenciar entre hipótesis nula y alternativa Nivel de significación Test de Hipótesis Introducción

Más detalles

Cantidad de producto en preempacados. Presentador: Lic. Douglas Arias Molina Laboratorio Costarricense de Metrología

Cantidad de producto en preempacados. Presentador: Lic. Douglas Arias Molina Laboratorio Costarricense de Metrología Cantidad de producto en preempacados Presentador: Lic. Douglas Arias Molina Laboratorio Costarricense de Metrología RTCA 01.01.11:06 Cantidad de Producto Pre-empacado Decreto 33371-COMEX-MEIC Gaceta N

Más detalles

CAPÍTULO I EL ESTUDIO DE LA VIDA

CAPÍTULO I EL ESTUDIO DE LA VIDA CAPÍTULO I EL ESTUDIO DE LA VIDA OBJETIVOS Análisis de prefijos y sufijos para definir algunos términos biológicos Explicación del método científico Descripción de los experimentos clásicos sobre el origen

Más detalles

Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática

Finanzas. Sesión 6 Tema 15: Punto de Equilibrio. Escuela Profesional de Ingeniería de Sistemas e Informática Finanzas Sesión 6 Tema 15: Punto de Equilibrio Escuela Profesional de Ingeniería de Sistemas e Informática Punto de equilibrio El Punto de Equilibrio de un bien o servicio, está dado por el volumen de

Más detalles

Habilidades Matemáticas. Alejandro Vera

Habilidades Matemáticas. Alejandro Vera Habilidades Matemáticas Alejandro Vera La distribución normal Introducción Una de las herramientas de mayor uso en las empresas es la utilización de la curva normal para describir situaciones donde podemos

Más detalles

Teléfono:

Teléfono: Apartado postal 17-01-218 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: ESTADISTICA II CÓDIGO: 15017 CARRERA: Economía NIVEL: Cuarto No. CRÉDITOS: SEMESTRE / AÑO ACADÉMICO: III semestre 2011-2012 PROFESOR:

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

Micro y Macroeconomía

Micro y Macroeconomía Micro y Macroeconomía 1 Sesión No. 6 Nombre: Teoría del consumidor Contextualización: La microeconomía como herramienta de análisis nos permite el poder comprender el comportamiento de las personas en

Más detalles

TEMA 12 COSTES ESTÁNDAR

TEMA 12 COSTES ESTÁNDAR TEMA 12 COSTES ESTÁNDAR 1 12.1. INTRODUCCIÓN Herramienta que se aplica en el proceso de planificación y control Planificación definición de objetivos y medios para lograrlos Parte muy importante en la

Más detalles

Universidad Tec Milenio: Profesional HG04001 Organización y Dirección. Actividad 4.

Universidad Tec Milenio: Profesional HG04001 Organización y Dirección. Actividad 4. Actividad 4. La incertidumbre ambiental 1 Objetivo de aprendizaje del tema Al finalizar el tema, serás capaz de: Definir el entorno y la forma en que las pueden responder a él. Determinar la incertidumbre

Más detalles

Guía para maestro. Múltiplos y divisores. Compartir Saberes.

Guía para maestro. Múltiplos y divisores. Compartir Saberes. Guía para maestro Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com Los procedimientos para encontrar el mínimo común múltiplo, máximo común divisor y factorizar

Más detalles

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS

PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS 1 1. DATOS INFORMATIVOS PONTIFICIA UNIVERSIDAD CATOLICA DEL ECUADOR FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA DE SISTEMAS MATERIA: ESTADISTICA CODIGO: 11715 CARRERA: INGENIERIA DE SISTEMAS NIVEL: TERCERO

Más detalles

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN

INTERVALO DE CONFIANZA PARA LA PROPORCIÓN INTERVALO DE CONFIANZA PARA LA PROPORCIÓN Si deseamos estimar la proporción p con que una determinada característica se da en una población, a partir de la proporción p' observada en una muestra de tamaño

Más detalles

Resistencia de Materiales

Resistencia de Materiales VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE lngenlería INDUSTRIAL PROGRAMA: Resistencia de Materiales CÓDIGO ASIGNATURA: 2215-735 PRE-REQUISITO: 1215-522 SEMESTRE: VII UNIDADES

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles
SitemapБез следа / Без вести | Learning Scala Programming | Hcs 457 Week 4 Communicable Diseases Paper